Paper Title:
The Process Strategies of Mould High-Speed Machining and their Applications in the Environment of PowerMILL
  Abstract

High-speed machining requires the support of high intelligent CAM software as well as customized machining strategies and properly selected machining parameters. Only by combining the two can the advantage of high-speed machining be made full use of. Compared to ordinary NC cutting, high-speed machining has special requirements for process strategies, CAM system and tool path. A complete tool path includes approaching/retracting tool, moving tool and tool path. Based on the above principles, a mould part is successfully processed using the PowerMILL software at the high-speed machining centre of DMG-DMU40T. The maximum hardness of the mould part is HRC50. There’s a 30 degree corner in the cavity with a transition radius of 3mm. The whole process can be divided into three stages: rough, semi-finish and finish machining and each stage involves the selection of tool path, the selection of tool, the selection of cutting parameters (including spindle speed, feed speed and depth of cut), and the application of PowerMILL specific machining methods (such as Race-line machining, rest roughing, automatic trochoidal machining, 3D offset finishing and etc).

  Info
Periodical
Edited by
Chengyong Wang, Ning He, Ming Chen and Chuanzhen Huang
Pages
542-548
DOI
10.4028/www.scientific.net/AMR.188.542
Citation
J. Liu, "The Process Strategies of Mould High-Speed Machining and their Applications in the Environment of PowerMILL", Advanced Materials Research, Vol. 188, pp. 542-548, 2011
Online since
March 2011
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ying Xue Yao, Chang Qing Liu, Jian Guang Li, H.J. Jing, S.D. Chen
Abstract:Traditional adaptive control technologies in machining process optimization are limited in applications because they depend much on sensors,...
1
Authors: Yi Wan, Zhan Qiang Liu, Xing Ai
Abstract:Five-axis milling is widely used in machining of complex surfaces parts. Part quality and productivity are extremely affected by cutting...
2049
Authors: Ryo Nishiyama, Keiichi Nakamoto, Tohru Ishida, Yoshimi Takeuchi
Abstract:This study deals with 5-axis control tool path generation to create microshapes dexterously and efficiently, while maintaining quality....
176
Authors: Peter Monka
Chapter 4: Advances in Tool-Chip Technology, Machining and Surface Roughness
Abstract:The paper deals with the experiments realized by means of cutting tool with linear cutting edge not parallel with the axis of the workpiece...
352