Paper Title:
Cellular Automata Simulation of Grain Growth under Consideration of Zener Pinning
  Abstract

Based on cellular automata, a model of simulating grain growth is established to study the effects of the second phase particle’s size and volume fraction on grain growth. The simulation results show that the smaller is the volume fraction of second phase particle, the finer is the grain of pinned matrix, and the pinning force of bigger second phase particle is stronger than that of smaller one. The correlative laws obtained from the simulation is in accordance with the theoretical models.

  Info
Periodical
Advanced Materials Research (Volumes 189-193)
Edited by
Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang
Pages
2200-2203
DOI
10.4028/www.scientific.net/AMR.189-193.2200
Citation
X. F. Ma, "Cellular Automata Simulation of Grain Growth under Consideration of Zener Pinning", Advanced Materials Research, Vols. 189-193, pp. 2200-2203, 2011
Online since
February 2011
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: N. Maazi, N. Rouag, Richard Penelle
Abstract:A grain growth simulation based on the concept of grain boundary migration driven by the radius curvature has been tested to study the...
887
Authors: Kyung Jun Ko, Pil Ryung Cha, Nong Moon Hwang
2557
Authors: Giuseppe Carlo Abbruzzese, Massimiliano Buccioni
Abstract:The statistical model of grain growth is able to predict the effect of Zener drag on the grain size distribution evolution and on grain...
1005
Authors: W. Mao, Y. Li, W. Guo, Z. An
Abstract:The precipitation behaviors of fine MnS and other second phase particles in hot band, decarburized sheet and 875 oC annealed sheet before...
247
Authors: Massimiliano Buccioni, Giuseppe Carlo Abbruzzese
Wednesday
Abstract:Grain growth processes in real polycrystalline materials are mostly characterized by the presence of restraining forces, originating, among...
528