Paper Title:
Numerical Simulation of Filling and Solidification Process for Low Superheat Billet Continuous Casting
  Abstract

In view of the process of flowing steel before the establishment of strip casting, the low superheat forced pouring continuous casting technology, i.e. the molten steel is cooled by the rotating cooling rollers, then it is forced to flow into mold, has been put forward in order to reduce superheat of liquid steel, enhance the efficiency of heat transfer and improve inner structure of billet. The filling and solidification processes of low superheat casting and submerged entry nozzle(SEN) casting are numerical simulated using fluid dynamics software. It is gained that velocity distributing diagrams, temperature distributing diagrams and solidification distribution diagrams at different time in the filling process. Influences of twin-roller cooling pouring on velocity field, temperature field and solidification are analyzed. The results show that the superheat of liquid steel is decreased and the solidification rate of liquid steel is increased by low superheat casting of twin-roller cooling process, which is favorable to improving the quality of billet and enhancing pull speed.

  Info
Periodical
Advanced Materials Research (Volumes 189-193)
Edited by
Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang
Pages
3899-3903
DOI
10.4028/www.scientific.net/AMR.189-193.3899
Citation
Y. J. Jin, X. C. Cui, Z. Zhang, J. B. Lin, J. T. Zhang, "Numerical Simulation of Filling and Solidification Process for Low Superheat Billet Continuous Casting", Advanced Materials Research, Vols. 189-193, pp. 3899-3903, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hong Yan, Zhi Hu, Ti Shuan Suan
Abstract:The technology of computer numerical simulation on casting process is an important frontal field of material science and technology. The...
1041
Authors: Jiao Cheng Ma, Hui Zhao Sun, Xue Bin Wang, Xia Lv
Chapter 1: Metal Materials
Abstract:In order to more accurate simulation the solidification of billet continuous casting. The measured shell thickness and surface temperature...
81
Authors: Bai Yang Lou, Fang Li Liu, Kang Chun Luo
Chapter 1: Materials Science and Engineering
Abstract:The numerical simulations of mold filling and solidification process for the A380 aluminum alloy were done by the supposed mathematical...
254
Authors: Zhi Lan Chen, Ren Wei Yang
Chapter 2: Simulation and Engineering Optimization
Abstract:The filling process, solidification process, gasification process and node temperature change of special-shaped stainless steel stirrer via...
479
Authors: Guang Ming Zhu, Zheng Chang, Xiao Ling Xian
Chapter 2: Mechatronics
Abstract:Using nonlinear finite element method, the changes of roll temperature and hot roll profile are studied in the initial casting stage, and the...
179