Paper Title:
Effect of Gypsum on Strength Development of Steam-Cured Concrete
  Abstract

The use of fly ashes for cement-replacement purposes, especially in high volumes, decreases rate of early strength development of the steam curing concrete. To resolve it, this paper developed a new steam-cured concrete incorporating fly ash and a chemical activator (gypsum). Experiments were conducted to investigate the mechanical properties at early and later ages of steam and standard curing concretes. The corresponding mechanism was also discussed by testing the microstructure of concretes. Results indicate that the demoulding compressive strength of steam curing concrete with 4% gypsum dosage can meet production requirements, and compressive strength of this concrete at later ages increase well. Compared with that of ordinary pure cement steam-cured concrete, concrete with 4% gypsum has a higher compressive strength gain rate. At an early age, addition of the gypsum can distinctly accelerate the extent of hydration of the steam curing fly ash cement systems, and thus the microstructure of concrete becomes denser. However, in standard curing condtion, the effect of gypsum is not distinct.

  Info
Periodical
Advanced Materials Research (Volumes 194-196)
Edited by
Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang
Pages
1085-1088
DOI
10.4028/www.scientific.net/AMR.194-196.1085
Citation
Z. M. He, X. J. Shen, J. Z. Liu, "Effect of Gypsum on Strength Development of Steam-Cured Concrete", Advanced Materials Research, Vols. 194-196, pp. 1085-1088, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jin Bang Wang, Zong Hui Zhou, Dong Yu Xu
Abstract:Combining with the utilization of waste, an new idea of using the waste to prepare high-strength artificial aggregates was put forward in...
906
Authors: Miao Zhou Huang, Tao Meng, Xiao Qian Qian, Jin Jian Zhang
Abstract:The flow ability, mechanical properties and microstructure of concrete with different strength grades affected by nano-SiO2 and...
480
Authors: Zhong Min, Bin Xie
Abstract:The properties of hollow partition such as compression strength, impact resilience, hanging capability, sound insulation capability are...
398
Authors: Bing Chen, Xin Yuan Yang, Ning Liu
Chapter 3: Green Building Materials
Abstract:Magnesium phosphate cement (MPC) was modified by fly ash, silica fume and re-dispersible latex powder and the properties of modified MPC,...
796
Authors: Dong Li, Fu Dan Chen, Cheng Cheng Che, Ling Peng Kong
Chapter 11: Disaster Prevention and Mitigation
Abstract:Based on desulfurization gypsum, blast furnace slag and steel slag (DGBFSSS), a new clink-free cementitious material with the meaning of...
2955