Paper Title:
Sliding Wear Behaviour of Cu-10Fe-3Ag In Situ Composite
  Abstract

A deformation-processed Cu-10Fe-3Ag in situ composite was made by consumable arc melting and casting followed by extensive deformation. A superior combination of mechanical strength and electrical/thermal conductivity was achieved with the composite since Fe filaments existed in the copper matrix. The effects of sliding speed and electrical current on sliding wear behavior and microstructure of the composite were investigated on wear tester. Worn surfaces of the Cu-10Fe-3Ag in situ composite were analyzed by scanning electron microscopy (SEM). Within the studied range of electrical current and sliding speed, the wear rate increased with the increasing electrical current and the sliding speed. Compared with Cu-10Fe in situ composite under the same conditions, the Cu-10Fe-3Ag in situ composite had much better wear resistance. Adhesive wear, abrasive wear and arc erosion were the dominant mechanisms during the electrical sliding processes.

  Info
Periodical
Advanced Materials Research (Volumes 194-196)
Edited by
Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang
Pages
1572-1576
DOI
10.4028/www.scientific.net/AMR.194-196.1572
Citation
Y. Li, D. Q. Yi, R. Q. Liu, S. P. Sun, "Sliding Wear Behaviour of Cu-10Fe-3Ag In Situ Composite", Advanced Materials Research, Vols. 194-196, pp. 1572-1576, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xiao Yan Lin, Xu Dong Li, Hong Song Fan, Yu Mei Xiao, Jian Lu, Xing Dong Zhang
Abstract:Hydroxyapatite/collagen (HA/COL) composites were prepared using coprecipitation and in-situ synthesis methods. All these processes yielded...
839
Authors: Xian Liang Zhou, Duo Sheng Li, Ai Hua Zou, Xiao Zhen Hua, Zhi Guo Ye, Qing Jun Chen
New Functional Materials
Abstract:SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and...
658
Authors: Jing Wang, Si Jing Fu, Yuan Hui Li
Chapter 1: Advanced Materials Science
Abstract:A powder metallurgy technique combined with in-situ synthesis technique was applied to produce (Ti,W)C particulates reinforced iron matrix...
7
Authors: Vipin Sharma, Suresh Kumar, O.P. Pandey
Chapter 11: Tribology and Wear
Abstract:The present study aims to analyze the effect of particle size on nature of microstructural features and wear behavior of composite. Stir...
564