Paper Title:
Study on Interfacial Properties of Ultra-High Performance Concrete Containing Steel Slag Powder and Fly Ash
  Abstract

The interfacial properties of reactive powder concretes (RPCs), other known as ultra-high performance concrete (UHPC), containing steel slag powder and ultra fine fly ash are studied in this paper. The microstrctural characterization of interfacial transition zones (ITZs), including the aggregate-cement paste interfacial zone and the steel fiber-paste interfacial zone, is investigated by SEM. The microhardness of the aggregate-paste ITZ and the steel slag-paste ITZ is studied and the bond strength of steel fiber in matrix is tested through fiber pullout tests. The results indicate that the microhardness of the steel slag-paste ITZ is slightly higher than that of the aggregate-paste ITZ, which implies the advantage of the substitution of quartz powder with steel slag powder in preparation of RPCs to some degrees. Moreover, the hardness of these two ITZs is higher than that of the hardened paste. A certain amount of hydration products has been observed exsiting on the surface of steel fiber by SEM and the bond strength of steel fiber-martix is up to 9.3MPa. These interfical properties are definitely critical to obtain high performance of UHPCs containing steel slag powder and fly ash.

  Info
Periodical
Advanced Materials Research (Volumes 194-196)
Edited by
Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang
Pages
956-960
DOI
10.4028/www.scientific.net/AMR.194-196.956
Citation
Y. Z. Peng, K. Chen, S. G. Hu, "Study on Interfacial Properties of Ultra-High Performance Concrete Containing Steel Slag Powder and Fly Ash", Advanced Materials Research, Vols. 194-196, pp. 956-960, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Regina Kalpokaite-Dickuviene, Kristina Brinkiene, Jurate Cesniene
Abstract:The effect of microfiber produced from recycled waste catalyst on microstructure and mechanical strength of cementitious complex binder was...
133
Authors: Xing Guo Wang, Zhao Xia Cheng, Yongchao Hao, Yi Xin Wang
Abstract:Mixing three different fiber composites into concrete specimens respectively, compressive strength, splitting tensile strength and flexural...
1976
Authors: Jian Qiang Wei, Ming Li Cao, Hang Yao
Abstract:As the composite of materials, fibers compositing, which can give full play to synergism of each fiber’s reinforcement, will become an...
313
Authors: Yan Dong Jia, Zheng Wei Zhou, Yan Dong Qu, Ao Shuang Tian
Abstract:Comparative experiments on the ordinary steel fiber recycled concrete (SFRC) and roller compacted SFRC were carried out to research the...
135
Authors: Hong Wei Wang
Chapter 1: Sustainable Construction Materials Technology
Abstract:A designed experimental study has been conducted to investigate the effect of polypropylene fiber on the compressive strength and flexural...
30