Paper Title:
Sandstone Unloading Rheological Test and Model Parameters Study
  Abstract

Rock rheology is common in engineering practice, which has an effect on long-term security and stability of the project. In order to understand the rheological mechanical properties under the condition of unloading sand, automatic servo apparatus of triaxial creep of rock was used to have a rheological mechanical unloading triaxial test on sandstone, which got typical flow complete curves of rock. Rheological test results showed that rheological phenomena occured in sandstone, and its rheological properties were significant with large rheological deformation, especially in high-stress conditions, When the external load exceeded the long-term strength of rock samples, specimen deformation went through three typical rheological stages with time increasing, and ultimately speed up the flow breakdown. Based on the experimental results, analyzed and studied the rheological parameters that were obtained, and discussed unsteady character law of rheological parameters. defined rheological damage of rock in the accelerating flow process as the unloading capacity and time-related exponential function, and proposed corresponding damage evolution equation, brought damage evolution equation into Burgers rheological model, and obtained nonlinear unloading model of rheological damage of rock, used accelerating rheological test curve of sandstone samples under the condition of 15MPa confining pressure and 135MPa stress level to verify nonlinear unloading model of rheological damage of rock, and the results showed that the fitting results of rheological test data and the improved rheological model had good consistency, and the rheological model can reflect the three stages of nonlinear rheology of rock, which can reflect the rheological characteristics under the condition of unloading sandstone more accurately.

  Info
Periodical
Advanced Materials Research (Volumes 197-198)
Edited by
Huaiying Zhou, Tianlong Gu, Daoguo Yang, Zhengyi Jiang, Jianmin Zeng
Pages
1473-1479
DOI
10.4028/www.scientific.net/AMR.197-198.1473
Citation
Y. Z. Jiang, R. H. Wang, "Sandstone Unloading Rheological Test and Model Parameters Study", Advanced Materials Research, Vols. 197-198, pp. 1473-1479, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Bin Lin, Zhi Bo Chen, Tao Ma
Chapter 6: Geotechnical Engineering and Underground Space Structure
Abstract:The test study the creep property of artificial frozen clay at different frozen temperature by independently developed uniaxial creep testing...
2634
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468