Paper Title:
Involvement of Iron Oxidation Enzyme System in Sulfur Oxidation of Acidithiobacillus ferrooxidans ATCC 23270
  Abstract

Growth of A. ferrooxidans ATCC 23270 cells in sulfur medium with 0.005% ferric sulfate for 3, 4, 5, 6, 7 and 10 days gave the maximum growth yield of 45, 58, 76, 86, 90 and 95 mg protein per liter medium, respectively. Iron oxidase activities of 1-, 2- and 3- day-cultured cells on sulfur with 0.005% ferric sulfate (3.4, 3.5 and 0.8 μmol Fe2+ oxidized/mg protein/min) were approximately 68, 70 and 16% of iron-grown ATCC 23270 cells (5.0 μmol/mg protein/min). In contrast iron oxidase activities of 1-, 2- and 3-day cultured cells on sulfur without iron (4.9, 3.8 and 2.7 μmol Fe2+ oxidized/mg protein/min) were approximately 98, 76 and 54% of the iron oxidase activity observed in iron-grown ATCC 23270 cell. SFORase activities of 3 day-cultured cell on sulfur with and without ferric sulfate (0.62 and 0.31 μmol Fe2+ produced/mg protein/min) were approximately 20 and 10 fold higher than that of iron-grown cell (0.03 μmol Fe2+ produced/mg protein/min). Both iron oxidase and SFORase activities increased at early-log phase and decreased at late-lag phase during growth of the strain on sulfur with or without Fe3+. The plasma membranes which had iron oxidase activity were prepared not only from iron-grown cells but also sulfur-grown cells. Iron oxidase activities of the plasma membranes prepared from sulfur- and iron-grown cells were 3.6 and 4.5 nmol Fe2+ oxidized per mg protein per min. These results suggest that iron oxidation enzyme system has a role in part in the energy generation of this bacterium from sulfur.

  Info
Periodical
Advanced Materials Research (Volumes 20-21)
Edited by
Axel Schippers, Wolfgang Sand, Franz Glombitza and Sabine Willscher
Pages
443-446
DOI
10.4028/www.scientific.net/AMR.20-21.443
Citation
T. M. Taha, T. Kanao, F. Takeuchi, T. Sugio, "Involvement of Iron Oxidation Enzyme System in Sulfur Oxidation of Acidithiobacillus ferrooxidans ATCC 23270", Advanced Materials Research, Vols. 20-21, pp. 443-446, 2007
Online since
July 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ying Bo Dong, Hai Lin
Chapter 2: Microbe-Mineral Interactions
Abstract:The effects of stresses induced by four ions (potassium, magnesium, aluminum and fluoride ions) on the growth and activity of...
165
Authors: Sören Bellenberg, Dieu Huynh Ngoc, Laura Castro, Maria Boretska, Wolfgang Sand, Mario Vera
Chapter 2: Microbe-Mineral Interactions
Abstract:Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2-) and hydroxyl...
118
Authors: Jin Long Song, Cheng Ying Jiang, Shuang Jiang Liu
Chapter 2: Microbe-Mineral Interactions
Abstract:Abstract. The thermoacidophilic archaeon Metallosphaera cuprina was isolated from a sulfuric hot spring. M. cuprina is...
145