Paper Title:
Griffith-II Type Crack Generation and Chip Formation Simulation in Vibration Turning Based on Prandtl-Reuss Flow Principle
  Abstract

In order to profound the function of stress wave in vibration turning and present the effectiveness of instant change of stress and strain in the workpiece under the shock load,put forward a simulation model of materials obeying Prandtl-Reuss flow principle with non-linear constitutive relation for vibration turning with low frequency.Related techniques have been stressed on criterion of chip separation from the workpiece, friction between the chip and the rake of the tool. Results of simulation for both conventional and vibratory turning show that the dynamic stress intension factor is 1.45 times or more in vibratory turning than that in conventional turning. It is the stress wave that leads to the accumulation and concentration of stress, the dislocation pile-up, facilitating the chip generation and development.

  Info
Periodical
Advanced Materials Research (Volumes 201-203)
Edited by
Daoguo Yang, Tianlong Gu, Huaiying Zhou, Jianmin Zeng and Zhengyi Jiang
Pages
1699-1703
DOI
10.4028/www.scientific.net/AMR.201-203.1699
Citation
L. Z. Gu, Q. Hong, B. Cheng, "Griffith-II Type Crack Generation and Chip Formation Simulation in Vibration Turning Based on Prandtl-Reuss Flow Principle", Advanced Materials Research, Vols. 201-203, pp. 1699-1703, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: T. Je, J. Lee, Doo Sun Choi, E. Lee, B. Shin, K. Whang
453
Authors: Junichi Tamaki, Akihiko Kubo, Ji Wang Yan
Abstract:The elastic and/or plastic behaviors of glass quartz, the most popular optical material and a hard and brittle material, were studied...
30
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468
Authors: Jie Chen
Chapter 1: Advanced Material Technology
Abstract:When machining multi-frame complex components, more than 90% of the materials would be removed, resulting in severe distortion of the parts...
143
Authors: Liang Chu, Li Jun Shi, Yan Bi, Da Sen Bi
Abstract:In this paper, the nosing process of metal tube with a conical die is investigated using the finite element method, and a series of...
1444