Paper Title:
Bacterial Particle Swarm Optimization Algorithm
  Abstract

The loss of the population diversity leads to the premature convergence in existing particle swarm optimization(PSO) algorithm. In order to solve this problem, a novel version of PSO algorithm called bacterial PSO(BacPSO), was proposed in this paper. In the new algorithm, the individuals were replaced by bacterial, and a new evolutionary mechanism was designed by the basic law of evolution of bacterial colony. Such evolutionary mechanism also generated a new natural termination criterion. Propagation and death operators were used to keep the population diversity of BacPSO. The simulation results show that BacPSO algorithm not only significantly improves convergence speed ,but also can converge to the global optimum.

  Info
Periodical
Advanced Materials Research (Volumes 211-212)
Edited by
Ran Chen
Pages
968-972
DOI
10.4028/www.scientific.net/AMR.211-212.968
Citation
M. Li, X. L. Ji, "Bacterial Particle Swarm Optimization Algorithm", Advanced Materials Research, Vols. 211-212, pp. 968-972, 2011
Online since
February 2011
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xiao Hua Wang, Yong Mei Zhang
Abstract:On the premise of ensuring safety and reliability in electricity market environment, the goal of State Grid Corporation is that purchase AGC...
274
Authors: Jun Zhang, Kan Yu Zhang
Chapter 19: Modeling, Analysis, and Simulation of Manufacturing Processes II
Abstract:Good dynamic performance of a system have great significance in the traditional sense, furthermore,it is more important at the point of...
4768
Authors: Da Wang, Hong Yu Bian
Chapter 1: Mechatronics
Abstract:In order to further improve the accuracy of the sonar image registration, a novel hybrid algorithm was proposed. It proposed the normalized...
1811
Authors: Wei Hua Fang
Chapter 6: Applied Mechanics
Abstract:In order to obtain geotechnical engineering material mechanical parameters correctly by using back analysis and overcome shortcoming of...
1647
Authors: Bei Zhan Wang, Xiang Deng, Wei Chuan Ye, Hai Fang Wei
Chapter 13: Mechanical Control and Information Processing Technology
Abstract:The particle swarm optimization (PSO) algorithm is a new type global searching method, which mostly focus on the continuous variables and...
1787