Paper Title:
Effect of the Milling Conditions on the Formation of Nanostructured Fe–Al Powders
  Abstract

Nanocrystalline Fe72Al28 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0-24 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX) and Mössbauer spectroscopy. The complete formation of bcc-FeAl solid solution is observed after 4 h of milling. The lattice parameter, a (nm), quickly increases within the first hours of milling and reaches a maximum value of 0.291 nm at 12 h of milling time; then a (nm) decreases to a value of 0.2885 nm for 24 h. The grain size decreases from 55 to 10 nm, while the strain increases from 0.18% to 0.88%. Grain morphologies at different formation stages were observed by SEM. The Mössbauer spectra show different behaviors with the increase of milling time. Indeed, after 4 h, the Mössbauer spectrum shows the presence of a singlet and sextet. The singlet indicates the presence of paramagnetic phase characteristic of A2 disordered structure and the sextet with a mean hyperfine field, , of 21 T is indicative of ordered DO3 structure. After 8 h of milling, the paramagnetic phase disappears leading to the appearance of a sextet, with a mean hyperfine field, Hhf, equal to 24.18 T which is characteristic of DO3’ structure. For the higher milling time i.e. 24 h, the Mössbauer spectrum was analyzed with two components. The first one with equal to 29.9 T is still indicative of ordered DO3, however, the second with a value of 10.25 T is characteristic of the fine domain B2 ordered structure.

  Info
Periodical
Edited by
Zeng Zhu
Pages
490-497
DOI
10.4028/www.scientific.net/AMR.214.490
Citation
Z. Hamlati, A. Guittoum, S. Bergheul, N. Souami, K. Taibi, M. Azzaz, "Effect of the Milling Conditions on the Formation of Nanostructured Fe–Al Powders", Advanced Materials Research, Vol. 214, pp. 490-497, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Gema González, A. Sagarzazu, R. Villalba, J. Ochoa
219
Authors: M. Yusop, De Liang Zhang, M. Wilson
Abstract:Alumina-iron nanocomposite powders containing 5vol.% of iron were fabricated by high-energy ball milling with different ball-to-powder...
131
Authors: H. Ramezanalizadeh, Saeed Heshmati-Manesh
Abstract:Molybdenum disiliside is known as a ceramic material with attractive properties for high temperature structural applications. In this study,...
1364
Authors: Amir Reza Shirani-Bidabadi, Ali Shokuhfar, Mohammad Hossein Enayati, Mazda Biglari
Abstract:In this research, the formation mechanisms of a (NiCr)Al-Al2O3 nanocomposite were investigated. The structural changes of powder particles...
21
Authors: S.V. Ketov, E.A. Lopatina, T.A. Bulatov, Yu.D. Yagodkin, V.P. Menushenkov
III. Soft and Hard Magnetic Materials
Abstract:In the present work, the structure and magnetic properties of strontium hexaferrite powder during milling in various media and subsequent...
183