Paper Title:
Fast Distributed Algorithm of Mining Global Frequent Itemsets
  Abstract

Most distributed algorithms of mining global frequent itemsets worked on net structure network and adopted Apriori-like algorithm. Whereas there were some problems in these algorithms: a lot of candidate itemsets and heavy communication traffic. Aiming at these problems, this paper proposed a fast distributed algorithm of mining global frequent itemsets, namely, FDMGFI algorithm, which set centre node. FDMGFI algorithm made computer nodes compute local frequent itemsets independently with FP-growth algorithm, then the centre node exchanged data with other computer nodes and combined, finally, global frequent itemsets were gained. FDMGFI algorithm required far less communication traffic by the searching strategies of top-down and bottom-up. Theoretical analysis and experimental results suggest that FDMGFI algorithm is fast and effective.

  Info
Periodical
Advanced Materials Research (Volumes 219-220)
Edited by
Helen Zhang, Gang Shen and David Jin
Pages
191-194
DOI
10.4028/www.scientific.net/AMR.219-220.191
Citation
B. He, "Fast Distributed Algorithm of Mining Global Frequent Itemsets", Advanced Materials Research, Vols. 219-220, pp. 191-194, 2011
Online since
March 2011
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Lu Na Byon, Jeong Hye Han
Abstract:As electronic commerce progresses, temporal association rules are developed by time to offer personalized services for customer’s interests....
287
Authors: Hai Feng Li, Ning Zhang
Chapter 1: Transportation & Service Science
Abstract:Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in...
21
Authors: Jun Tan
Chapter 12: Computer-Aided Design and Applications in Industry and Civil Engineering
Abstract:Online mining of frequent closed itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we...
2910
Authors: Hui Wang
Chapter 5: Numerical Methods, Computation Methods and Algorithms for Modeling, Simulation and Optimization, Data Mining and Data Processing
Abstract:We present a new algorithm for mining maximal frequent itemsets, MaxMining, from big transaction databases. MaxMining employs the depth-first...
1765