Paper Title:
Fatigue Microcrack Initiation and Propagation of Aluminum Alloy under Different Stress Level and Stress Ratio
  Abstract

The microstructure of fatigue fracture of aluminum alloys under various stresses and stress ratios were studied by optical microscope and scanning electron microscope, and the influences of microstructure features on microcrack initiation and propagation were investigated. The results show that the fatigue microcrack originated from surface or subsurface of specimens. And with the increase of stress ratio, fatigue crack originated from deeper subsurface at the same stress level. With the increase of stress level, fatigue crack originated from shallower subsurface or surface at same stress ratio. There is an increase in crack propagation region as the stress level decreases at the same stress ratio. Increasing of stress ratio, increases crack propagation region under same stress level. Microcrack generally originated from secondary (S phase particles) and larger particles at low stress level and high stress ratio. Microcrack generally originated from larger constituent particles at high stress level and low stress ratio. Microcracks propagation is evidently impeded by grain boundaries at low stress level and high stress ratio.

  Info
Periodical
Advanced Materials Research (Volumes 239-242)
Edited by
Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He
Pages
1495-1500
DOI
10.4028/www.scientific.net/AMR.239-242.1495
Citation
G. X. Bian, Y. L. Chen, J. J. Hu, Y. Zhang, "Fatigue Microcrack Initiation and Propagation of Aluminum Alloy under Different Stress Level and Stress Ratio", Advanced Materials Research, Vols. 239-242, pp. 1495-1500, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: R.H.C. Wong, Y.S.H. Guo, K.T. Chau, Wei Shen Zhu, Shu Cai Li
Abstract:This paper presents the crack growth mechanism from a 3-D surface flaw on gabbro specimens using strain measurement and acoustic emission...
2357
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using tensile strength of 490MPa TMCP steel were performed in synthetic seawater condition to...
1145
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557
Authors: Adam L. Pilchak, Wei Jie Lu, James C. Williams
Chapter 1: Invited Lectures
Abstract:Titanium (Ti) alloys are used in critical, fatigue limited applications in aircraft and aircraft engines. Current design practices are, of...
85