Paper Title:
Physical Modelling of Joint Effects on Deformation and Failure of Tunnels
  Abstract

The deformation and failure mechanisms of tunnels in jointed rock mass with variable orientation and overburden pressures were studied by physical modelling. The deformation and expansion characteristics and regularities of joints and its influence on the stability of tunnels were analyzed. The results shown that the effects of unloading and reactivation of joints, and subsequent shear slip and deformation induced by excavation cause the structural instability of tunnels. The deformation, failure, and instability of surrounding rocks are essentially the continued deformation and repeated failure of joints in varied stress field caused by excavation and overburden pressure. When the dip angle of the joint sets is 75°, the joints have extremely striking influence on the stability of tunnels. In addition, with the increasing of the overburden pressures, the deformation extent and failure rate are sped up prominently due to the rapid increasing of the shear stresses on joint planes.

  Info
Periodical
Advanced Materials Research (Volumes 243-249)
Edited by
Chaohe Chen, Yong Huang and Guangfan Li
Pages
3205-3210
DOI
10.4028/www.scientific.net/AMR.243-249.3205
Citation
H. J. Zhao, F. S. Ma, J. Guo, "Physical Modelling of Joint Effects on Deformation and Failure of Tunnels", Advanced Materials Research, Vols. 243-249, pp. 3205-3210, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shu Huang, Jian Zhong Zhou, Yi Bin Chen, C.D. Wang, X.D. Yang, Y.C. Dai
Abstract:An appropriate finite element analytical model for laser compound forming (LCF) was established with ABAQUS code, and then some key technical...
3857
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Wojciech Wajda, Henryk Paul
Abstract:The paper describes the mechanism of deformation at 77 K of pure aluminum bicrystals of different grain orientations. The following...
108
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468
Authors: Sha Ma, Zhi Quan Huang
Chapter 8: Biomedical Manufacturing
Abstract:The question of rock mass deformation Long-term forecast is researched base on DRNN. The construction of neural network is optimized via...
770