Paper Title:
Experimental Investigation on Damage Behavior of RC Shear Walls
  Abstract

Low-cycle cyclic loading tests were carried out on seven reinforced concrete shear wall specimens with different design parameters to investigate the damage behavior under earthquakes. The damage features including the damage process, deformations, the maximum crack width and the corresponding residue crack width at different damage state were recorded. According to the experimental data, the influence of axial compressive load ratio, stirrup ratio of the boundary column and cross-section shape on the ductility, carrying capacity, deformation characteristic and seismic damage is analyzed. With the axial compressive load ratio increasing, the carrying capacity and shear effect increase while the ductility and residual crack ratio decrease. With the deformation and damage increasing, the shear effect increases. The shear walls with I-shaped cross-section display more shear effect than those with the cross-section of “—” and “T” shape.

  Info
Periodical
Advanced Materials Research (Volumes 250-253)
Edited by
Guangfan Li, Yong Huang and Chaohe Chen
Pages
2407-2411
DOI
10.4028/www.scientific.net/AMR.250-253.2407
Citation
H. J. Jiang, Y. Ying, B. Wang, "Experimental Investigation on Damage Behavior of RC Shear Walls", Advanced Materials Research, Vols. 250-253, pp. 2407-2411, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xue Yi Fu, Jia Xin Qu
Abstract:Both reference [1~2] method and partitioned design method (GB 50010-2002) were adopted to design complex shear walls, and some factors such...
980
Authors: Jun Su, Shi Lang Xu, Dong Tao Xia
Chapter 2: Frontiers of Building Materials
Abstract:In this article, through the seismic experimental analysis for six frame joints of ultra-high toughness cementitious composites, the...
794
Authors: Hong Yuan Tang, Wei Lin
Chapter 1: Structural Engineering
Abstract:This paper uses ANSYS finite element program to do the nonlinear finite element analysis on steel reinforced concrete L-shaped short-shear...
571
Authors: Shan Suo Zheng, Yue Heng Yan, Qing Lin Tao, Wen Yong Li
Chapter 5: Seismic Engineering
Abstract:Based on the experiments of a reinforced concrete frame column, 5 new members with different volumetric percentage of stirrups which are...
2046
Authors: Xiao Wei Li, Xue Wei Li, Xin Yuan
Chapter 1: Traditional Building Materials
Abstract:For expedite the development of high titanium heavy slag concrete, eight high titanium heavy slag high strength reinforced concrete...
455