Paper Title:
Simulation of Welding Residual Stress to the Fracture Strength of Steel Moment-Resist Frame Connection
  Abstract

Inspection made for moment-resist frame connection assembled by welding found that most failures occurred in weld zone between beam and column flange connections, and these failures were caused by cracks initiated at the root of weld. The main reason for the crack initiation is not plastic deformation as expected, and the evaluation results indicated that the major failure mechanism for the brittle failure behavior of moment-resist frame (MRF) connection is caused by the residual stress induced by welding. This paper use finite element method to simulate welding residual stress, and apply them into 3D fracture models. With fracture parameters calculated in finite element analysis, information about fracture strength of MRF connection is acquired.

  Info
Periodical
Advanced Materials Research (Volumes 250-253)
Edited by
Guangfan Li, Yong Huang and Chaohe Chen
Pages
3682-3687
DOI
10.4028/www.scientific.net/AMR.250-253.3682
Citation
T. W. Fan, "Simulation of Welding Residual Stress to the Fracture Strength of Steel Moment-Resist Frame Connection", Advanced Materials Research, Vols. 250-253, pp. 3682-3687, 2011
Online since
May 2011
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jun Si, Fu Zhen Xuan, Shan Tung Tu
Abstract:The interaction behavior of two non-aligned through-wall cracks in flat plates is investigated by the finite element method (FEM) under...
105
Authors: Jin San Ju, Xiu Gen Jiang, Xiang Rong Fu
Abstract:This paper primarily presents the development and application of automation computational analysis techniques to determine the dynamic...
705
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425
Authors: Zhi Ping Yin, Jiong Zhang, Jin Guo, Qi Qing Huang
Abstract:The finite element software ANSYS was employed to create a finite element model of the cracked wing beam integrated structure, and the stress...
101
Authors: Yu E Ma, Bao Qi Liu, Zhen Qiang Zhao
Chapter 2: Material Science and Engineering
Abstract:Al-Li alloy 2198-T8 was used in the fuselage application. Integral fuselage panels were joined by double friction stir welds. Fatigue tests...
651