Paper Title:
Numerical Study on Progressive Failure of the Marble Plate Based on the Thin-Layer Tri-Node Jointed Element
  Abstract

In order to model the mechanical behavior of joints efficiently, a thin-layer tri-node joint element is constructed. The stiffness matrix of the element is derived in the paper. For it shares the common nodes with the original tri-node triangle element, the tri-node joint element can be applied to model the crack propagation without remeshing or mesh adjustment. Another advantage is that the cracked body is meshed without consideration of its geometry integrity and existence of the joints or pre-existed crack in the procedure of mesh generation, and then the triangular element intersected by the crack or joint is automatically transformed into the tri-node joint element to represent pre-existed cracks. These make the numerical simulation of crack propagation highly convenient and efficient. After CZM is chosen to model the crack tip, the mixed- energy simple criterion is used to determine whether the element is intersected by the extended crack or not, the extended crack is located in the model. By modeling the marble plates with two edge cracks subjected to the uniaxial compressive loads, it is shown that the numerical results are in good agreement with the experimental results, which suggests that the present method is valid and feasible in modeling rock crack propagation.

  Info
Periodical
Advanced Materials Research (Volumes 255-260)
Edited by
Jingying Zhao
Pages
1867-1872
DOI
10.4028/www.scientific.net/AMR.255-260.1867
Citation
J. H. Qi, Z. N. Zhang, X. R. Ge, "Numerical Study on Progressive Failure of the Marble Plate Based on the Thin-Layer Tri-Node Jointed Element", Advanced Materials Research, Vols. 255-260, pp. 1867-1872, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Chun Yong Huo, Xiao Bin Yang, Zhuo Zhuang, Julaiti Maitirouzi, Y.R. Feng, C.J. Zhuang
Abstract:Preventing pipeline from rapid crack propagation is a critical issue to avoid casualties and disasters. In this paper, by combining the...
85
Authors: Yan Qing Wu, Hui Ji Shi
Abstract:This study looks at the crack propagation characteristics based on the cohesive zone model (CZM), which is implemented as a user defined...
187
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: F. Ricci, F. Franco, Nicola Montefusco
Abstract:In this paper, the mechanisms of propagation of the damage in aluminum panels repaired with bonded composite patches of different mechanical...
597