Paper Title:
Prediction of Target Displacement of Reinforced Concrete Frames Using Artificial Neural Networks
  Abstract

In this paper, the application of artificial neural network (ANN) in predicting seismic response of reinforced concrete (RC) frames with masonry infilled walls is investigated. The objective of this research is to predict roof displacement and base shear (ANN outputs) in the target displacement. The total of 855 database were prepared for modeling neural network using finite element method (FEM) by changing six parameters (the input parameters of ANN) including the number of bays, the number of stories, thickness of masonry infill, infilled wall ratio, existence of soft story and design spectral acceleration. A training set of 513 prepared database were used as training data and the validation set of 342 database were used as validation data in the next step. In the present study, two ANNs were trained; a multilayer perseptron (MLP) with Levenberg–Marquardt (LM) back propagation algorithms and a Radial Basis function (RBF), both with different structures and the best structure for each of them was obtained. The performance of ANNs was evaluated using mean square error (MSE) and correlation coefficient (R2) criteria. Results indicate that using both MLP and RBF ANNs for predicting target displacement have been appropriate and have low error as well as high speed. Furthermore, RBF network has a higher speed in training process of data compared to MLP network.

  Info
Periodical
Advanced Materials Research (Volumes 255-260)
Edited by
Jingying Zhao
Pages
2345-2349
DOI
10.4028/www.scientific.net/AMR.255-260.2345
Citation
I. Kameli, M. Miri, A. Raji, "Prediction of Target Displacement of Reinforced Concrete Frames Using Artificial Neural Networks", Advanced Materials Research, Vols. 255-260, pp. 2345-2349, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Deng Xiang Zhang, Wei Jun Yang
Abstract:Prediction of degree of hydration of concrete is very important on research of crack-resistance capability and durability of the structure....
412
Authors: Rati Wongsathan, Issaravuth Seedadan, Metawat Kavilkrue
Chapter 8: Biomedical Engineering
Abstract:A mathematical prediction model has been developed in order to detect particles with a diameter of 10 micrometers or less (PM-10) that are...
628
Authors: Liborio Cavaleri, Fabio di Trapani, Maurizio Papia
Chapter 4: Rehabilitation and Retrofitting, Reliability and Durability
Abstract:The assessment of the capacity of RC masonry infilled RC structures constitutes nowadays a still debated issue. Pushover based procedures for...
339