Paper Title:
Test of Fire Response of a Profiled Sheet-Ceramsite Concrete Composite Floor
  Abstract

For study of the post-fire characteristics of the profiled sheet-ceramsite concrete composite floor (noted as PSCCF) subjected to fire load, the experimental research on post-fire bearing capacity of a PSCCF after fire is carried out. Based on the experimental results, effect of the fire on post-fire bearing capacity of the profiled sheet-ceramsite concrete composite floor is discussed, and the failure phenomenon and mechanism are analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after fire has great change compared with the floor not subjected to fire load, but the composite floor subjected to fire still exhibits higher bending capacity, and the ultimate value of the equivalent distributed load is up to 25kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-ceramsite concrete composite floor after exposure to fire.

  Info
Periodical
Advanced Materials Research (Volumes 255-260)
Edited by
Jingying Zhao
Pages
255-258
DOI
10.4028/www.scientific.net/AMR.255-260.255
Citation
X. T. Wang, H. J. Wang, M. Zhou, Y. Ji, "Test of Fire Response of a Profiled Sheet-Ceramsite Concrete Composite Floor", Advanced Materials Research, Vols. 255-260, pp. 255-258, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wen Hui Bai, Bin Xiang Sun
Abstract:In order to investigate flexural behavior of simply-supported beam using recycled coarse aggregate concrete, the difference of the component...
543
Authors: Wen Hui Bai
Abstract:This paper mainly studies the deflection under short-term loading of recycled course aggregate reinforced concrete beam is calculated by...
1443
Authors: Fei Yu Liao, Yong Jin Li
Chapter 1: Traditional Building Materials
Abstract:Gap between steel tube and concrete core could be recognized as a type of initial concrete imperfection in concrete-filled steel tubular...
35