Paper Title:
Theoretical Studies of the Atomic and Electronic Structure of Mercury/Aluminium Oxide Interface
  Abstract

Density-functional theory (DFT) theory is conducted for the structural and electronic features at the Hg/Al2O3 interface by the analysis of optimal structural geometry, partial density of states (PDOS) and difference charge density. The two adsorption sites of on-top and hollow locations according to the symmetry is adopted to construct the associated interfacial models between Hg atom and free surface. The calculated studies show that the oxygen atoms near Hg atom in the Al2O3 surface, for both on-top and hollow sites, have the gathering effect by shifting toward Hg atom. But their interacting electrons at the interface exhibit different statues in terms of the PDOS analysis that there have no evolution tendency to form the bond between associated O and Hg atoms at the on-top site; and the occurrence of Hg-5d and O-2p overlapping orbitals reveals the strong covalent bond existed at the interface. The PDOS curves show that Al atom in the surface is not liable to contribute to the formation of corresponding bonds by mixing its electrons with Hg atom. Meanwhile, the calculated results derived from difference charge density are in good agreement with the PDOS analysis. The calculated results support some advanced atomic investigation on design a new sorbent refined from fly gas, especially improving the mercury removal from the flue gas.

  Info
Periodical
Advanced Materials Research (Volumes 255-260)
Edited by
Jingying Zhao
Pages
2972-2976
DOI
10.4028/www.scientific.net/AMR.255-260.2972
Citation
P. He, J. Wu, X. M. Jiang, N. C. Chen, "Theoretical Studies of the Atomic and Electronic Structure of Mercury/Aluminium Oxide Interface", Advanced Materials Research, Vols. 255-260, pp. 2972-2976, 2011
Online since
May 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wei Zhao, Qing Yuan Meng
Chapter 7: Physics and Chemistry Materials and Technology
Abstract:The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles...
870
Authors: Xiong Yang, Ying Shu Liu, Yong Ling Li
Chapter2: Research on Material Engineering and Material Applications
Abstract:Nine types of active carbon materials’ adsorption isotherm of nitrogen at 77K were measured, and their surface texture parameters were...
177