Paper Title:
Effects of Finishing Rolling Temperature on the Microstructural Behavior for Fe-0.1C Steel as a Function of Niobium Content
  Abstract

The demand to replace Fe-V steel with Fe-Nb steel is evolving because of high costs of raw vanadium material. For the mass production of Fe-Nb steel, the most critical barrier is a poor impact toughness comparing with that of Fe-V steel. This study covers a microstructural investigation for ferrite grain size to explain the strength and toughness results as a function of V and Nb contents. The steel samples were made of three different compositions, i.e., Fe-V steel (Fe-0.05V-0.001Nb), Fe-V-Nb steel (Fe-0.014V-0.03Nb), and Fe-Nb steel (Fe-0.003V-0.033Nb). Rolling temperature to initiate was 1150°C for the all experiments. However, rolling temperature to finish was set differently for two conditions; 950°C and 860°C. The rolling to 860°C decreased the grain size for the ferrite phase and increased the impact toughness rather than the case of 950°C. The Fe-V-Nb steel exhibited similar value of the impact toughness with that for the Fe-V steel because of the low rolling temperature to finish, i.e., 860°C. The whole replace of V with Nb decreased the impact toughness significantly, however some extent of V content remained with Nb content showed the comparable toughness to the Fe-V steel by optimizing the controlled rolling process.

  Info
Periodical
Advanced Materials Research (Volumes 26-28)
Edited by
Young Won Chang, Nack J. Kim and Chong Soo Lee
Pages
55-60
DOI
10.4028/www.scientific.net/AMR.26-28.55
Citation
N. H. Kang, I. Park, J. W. Jin, S. H. Byun, Y. J. Lee, K. M. Cho, "Effects of Finishing Rolling Temperature on the Microstructural Behavior for Fe-0.1C Steel as a Function of Niobium Content", Advanced Materials Research, Vols. 26-28, pp. 55-60, 2007
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Klaus Hulka
Abstract:In the recent years several new high strength steel grades have been developed, which exhibit improved cold formability and thus are...
91
Authors: Guo Bin Li, Zheng Zhi Zhao, Di Tang
Abstract:The microstructure evolution of 780 MPa hot dip galvanized dual-phase (DP) steel at heating stages of the annealing process was analyzed...
1331
Authors: Zhi Gang Wang, Zheng Zhi Zhao, Ai Min Zhao, Jie Yun Ye
Chapter 2: Manufacturing and Design Science
Abstract:Deep drawing dual phase steel was designed and trial-produced in the laboratory. The microstructure and recrystallization texture was studied...
1223
Authors: Jie Yun Ye, Zheng Zhi Zhao, Zhi Gang Wang, Ai Min Zhao, Jing Jing Chen
Chapter 3: Iron and Steel
Abstract:C-Mn-Cr-Mo dual phase steel was piloted in laboratory. OM, SEM, tensile tests and XRD were used to characterize the microstructures,...
670
Authors: Zhuang Li, Di Wu, Wei Lv, Shao Pu Kang, Zhen Zheng
Chapter 1: Materials Engineering. Technologies and Processing
Abstract:In this paper, ultra-high strength dual phase steel was investigated. Thermomechanical processing was conducted by using a laboratory hot...
666