Paper Title:
Application of FEM in Investigating Machining Performance
  Abstract

The two biggest problems that often experienced in machining cast iron are poor machinability and high hardness. Up to now, many researchers have investigated machining performance and how to find optimum condition in machining ductile cast iron. This study aims to investigate the machining performance of ductile cast iron and carbide cutting tool using FEM. Performances were evaluated by changing the cutting tool geometries on the machining responses of cutting force, stress, strain, and generated temperature on the workpiece. Deform-3D commercial finite element software was used in this study. Ductile cast iron FCD 500 grade was used as the work piece material and carbide insert DNMA432 type with WC (Tungsten) was used for the cutting tool. The effects of rake and clearance angles were investigated by designing various tool geometries. Various combination of carbide insert geometries were designed using Solid Work to produce +15, +20 and +30 deg for rake angle and 5, 7, 8 and 9 deg for clearance angle. Machining condition for the simulations were remained constant at cutting speed of 200 m/min, feed rate of 0.35 mm/rev, and depth of cut of 0.3 mm. The results of effective-stress, strain and generated temperature on both chip and material surface were analysed. The results show that by increasing the rake angle (α), it will improves the machining performance by reducing the cutting force, stress, strain and generated temperature on surface of workpiece. But, by increasing the clearance angle (γ), it will not affect much to the cutting force, stress, strain and generated temperature on chip.

  Info
Periodical
Advanced Materials Research (Volumes 264-265)
Edited by
M.S.J. Hashmi, S. Mridha and S. Naher
Pages
1033-1038
DOI
10.4028/www.scientific.net/AMR.264-265.1033
Citation
H. Yanda, J. A. Ghani, C. H. Che Haron, "Application of FEM in Investigating Machining Performance", Advanced Materials Research, Vols. 264-265, pp. 1033-1038, 2011
Online since
June 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Han Ul Lee, Dong Woo Cho
Abstract:For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most...
43
Authors: Xue Song Han
Abstract:Exit fracture, the main factor influencing the precision of workpiece, has already been extensively studied. In the case of nanometric...
1833
Authors: Jun Zhou, Jian Feng Li, Jie Sun
Abstract:In this paper, the micro-scale machining characteristics of a non-ferrous structural alloy, aluminum 7050-T7451 is investigated through a...
657
Authors: Atanu Das, Partha Pratim Saha, Santanu Das
Chapter 8: Material Processing Technology
Abstract:Shaping Burrs are produced at the edge of a workpiece when a cutter exits it. It causes difficulties in manufacturing and assembly stages....
1602
Authors: Guo Jun Dong, Yuan Jing Zhang, Ming Zhou
Chapter 1: Research and Development of Technologies and Tools for Material Processing
Abstract:Due to its relatively low mass density, low cost, high strength, the aluminum alloy is an ideal optical material to fabricate the large metal...
162