Paper Title:
Finite Element Method for Predicting the Cohesive Strength of DLC Film on 316L Stainless Steel by Four Point Bend Test and Validation with Experimental Results
  Abstract

The mechanical performance of DLC coatings on 316L stainless steel deposited by a saddle field fast atom beam source has been evaluated using the four point bend (FPB) test. Two different deposition parameters, pressure and current were varied when depositing the films. Load-displacement measurements were carried out during the bend test to determine the load corresponding to crack initiation. This load designated as the cohesive strength of the coating which is also called the cracking resistance of coating and provides a measure of the strength of the coating. The cohesive strength of the coating was calculated based on elementary beam theory. Scanning Electron Microscopy (SEM) was used to determine the location of the crack. Finite element analysis was used to predict the stress distribution across the coating thickness. The experimental work on FPB tests has been used to support the numerical (finite element) model for the determination and prediction of film cohesive strength. It was observed that at lower deposition current, the cohesive strength increases with increased deposition pressure whereas, for higher deposition current, these values do not increase with increasing deposition pressure. The model takes into account the film’s Young’s modulus, thickness and deposition pressure and current, and has shown that it is capable of predicting film cohesive strength when combined with a theoretical formulation for brittle fracture. It has been observed that the maximum stress develops at the outer surface of the film and propagates through the film-substrate interface. This result has only been validated for films with higher Young’s modulus compared to that of the substrate material.

  Info
Periodical
Advanced Materials Research (Volumes 264-265)
Edited by
M.S.J. Hashmi, S. Mridha and S. Naher
Pages
1823-1831
DOI
10.4028/www.scientific.net/AMR.264-265.1823
Citation
M. M. Morshed, S. M. Daniels, M.S.J. Hashmi, "Finite Element Method for Predicting the Cohesive Strength of DLC Film on 316L Stainless Steel by Four Point Bend Test and Validation with Experimental Results", Advanced Materials Research, Vols. 264-265, pp. 1823-1831, 2011
Online since
June 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xia Chun Huang, Han Yu Wang, Li Qun Zhou
Chapter 1: Metal Materials
Abstract:In this paper, ABAQUS was used to simulate the stamping process for electrodeposited nickel coating. In the simulation, a built-in cohesive...
143
Authors: Nurot Panich, Surasak Surinphong, D.A. Karpov, Yong Kwang Tan, Chin Foo Goh, Jan Ma
Abstract:The aim of this work is to fabricate and develop the innovative ceramic coatings for protection applications with both high hardness and...
81
Authors: Zuo Li Li, Jun Zhao, Fu Zeng Wang, An Hai Li, Xian Hua Tian
Chapter 4: CAD/CAM/CAE Technologies in Modeling and Simulation of Processes in High Speed Machining
Abstract:A systematic and parametric study of the effect of grain size and volume fraction of secondary phase on crack propagation behavior of...
462
Authors: Xiao Li, Huang Yuan
Chapter 1: Analysis and Testing of Mechanical Properties of Materials as Element of Assessment of the Structural Integrity
Abstract:Computational modeling of three-dimensional crack propagation in very ductile materials is still a challenge in fracture mechanics analysis....
132