Paper Title:
Al-4.5 Cu-3.8 Fe In Situ Composites: Effect of Rolling on Microstructure and Wear Properties
  Abstract

Al based MMCs have attracted a lot of attention particularly for their desirable combination of high stiffness and low specific gravity. In the present study, Al-4.5Cu-3.8Fe in-situ composites were manufactured by using solidification process. During solidification Al-Fe intermetallic was formed in a matrix of Al-Cu alloy. The composite was hot rolled at different degree using a two high rolling mill. Subsequently the composites were characterized by SEM, XRD, hardness measurement and wear testing. Wear testing was conducted on a pin-on-disk machine by applying 10 KN load. After the wear tests, the worn surfaces of the composite specimens were examined under an optical microscope. According to experimental results, as cast in-situ composites exhibited the highest wear rate. The hardness increased and wear rate decreased with the extent of rolling. The presence of reinforcing Al3Fe phase and fragmentation of those particles during hot rolling are suggested to contribute to the better wear resistance of the composites. The extent of abrasive wear was largest in the case of as cast composites, as evidenced by deep grooves on the worn surface and highest weight loss.

  Info
Periodical
Advanced Materials Research (Volumes 264-265)
Edited by
M.S.J. Hashmi, S. Mridha and S. Naher
Pages
1939-1943
DOI
10.4028/www.scientific.net/AMR.264-265.1939
Citation
S.K. Shaha, A.S.W. Kurny, M. Hasan, S. Dyuti, "Al-4.5 Cu-3.8 Fe In Situ Composites: Effect of Rolling on Microstructure and Wear Properties", Advanced Materials Research, Vols. 264-265, pp. 1939-1943, 2011
Online since
June 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Yuan Li, Hao Ran Geng, Hai Ou Qin
Abstract:The Al-7%Si /9% Al63Cu25Fe12 composites were fabricated by mechanical stirring method. The composite took...
1022
Authors: Shi Zhong Wei, Liu Jie Xu, Guo Shang Zhang, Ji Wen Li, Bao Zhu Dai
Chapter 3: Advanced Manufacturing Technology
Abstract:Mo-based composites with Al2O3 particles were developed in order to enhance the wear resistance of molybdenum alloys....
467
Authors: Rupa Dasgupta, Satyabrata Das, Amol Kumar Jha
Friction and Wear in Material Processing
Abstract:Metal Matrix Composite made from Al-7075 based alloy dispersed with 10% SiC particles through the liquid metallurgy route were evaluated for...
555
Authors: Zhu Rui, Yu Tao Zhao, Song Li Zhang, Zhi Hong Jia
Chapter 1: Non-Ferrous Metal Material
Abstract:Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction...
122
Authors: Dong Chen, Zhe Chen, Peng Zhang, Yi Jie Zhang, Haiheng Ma, Hao Wei Wang
Chapter 5: Metal Alloy Materials
Abstract:In-situ TiB2 particles reinforced AA7055 composites were fabricated through mixed-salts route and their bending properties were...
1005