Paper Title:
Mathematical Modeling of Flow Behaviour of API-X70 during Hot Torsion Testing
  Abstract

The flow behaviour of material is strongly influenced by the microstructure evolution during hot deformation processes. In this work, a comprehensive mathematical modelling of heat transfer and plastic deformation was carried out employing finite element analysis based on rigidviscoplastic formulation. Semi-empirical models of dynamic recovery and recrystallization were utilized to develop the microstructure dependent constitutive equations. They were then integrated into the finite element code to simulate stress-strain curve of API-X70 steel during hot deformation process. Hot torsion tests were carried out at various deformation conditions for characterization of microstructure equations and model validation. The good agreement between experimental data and simulation results were achieved. The model predicts work hardening, dynamic recovery and recrystallization simultaneously and it considers their effects on the flow stress of the material during hot deformation.

  Info
Periodical
Advanced Materials Research (Volumes 264-265)
Edited by
M.S.J. Hashmi, S. Mridha and S. Naher
Pages
60-65
DOI
10.4028/www.scientific.net/AMR.264-265.60
Citation
B. Mirzakhani, "Mathematical Modeling of Flow Behaviour of API-X70 during Hot Torsion Testing", Advanced Materials Research, Vols. 264-265, pp. 60-65, 2011
Online since
June 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Atef S. Hamada, L. Pentti Karjalainen, Mahesh C. Somani, R.M. Ramadan
Abstract:The hot deformation behaviour of two high-Mn (23-24 wt-%) TWIP steels containing 6 and 8 wt-% Al with the fully austenitic and duplex...
217
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468