Paper Title:
An Efficient DoS Attacks Detection Method Based on Data Mining Scheme
  Abstract

To defend against DoS attacks and ensure QoS of web server, we first propose an efficient network anomaly detection method based on TCM-KNN (Transductive Confidence Machines for K-Nearest Neighbors) algorithm. Secondly, we integrate a lot of objective and efficient DoS impact metrics from the perceptions of the end users into TCM-KNN algorithm to build a robust anomaly detection mechanism. Finally, Genetic Algorithm (GA) based instance selection method is introduced to boost the real-time detection performance of our method.

  Info
Periodical
Edited by
Yanwen Wu
Pages
302-307
DOI
10.4028/www.scientific.net/AMR.267.302
Citation
X. Chen, "An Efficient DoS Attacks Detection Method Based on Data Mining Scheme", Advanced Materials Research, Vol. 267, pp. 302-307, 2011
Online since
June 2011
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhong Ping Zhang, Yong Xin Liang
Abstract:This paper proposes a new data stream outlier detection algorithm SODRNN based on reverse nearest neighbors. We deal with the sliding window...
1032
Authors: Hai Feng Li, Ning Zhang
Chapter 1: Transportation & Service Science
Abstract:Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in...
21
Authors: Dong Wang, Shi Huan Xiong
Chapter 8: Nanomaterials and Nanomanufacturing
Abstract:The learning sequence is an important factor of affecting the study effect about incremental Bayesian classifier. Reasonable learning...
1455
Authors: Na Rui Bu, Run Shan Bai, Zhang Zhen Li, De Zhong Lin
Chapter 6: Vibration, Noise Analysis and Control
Abstract:Analysis of slope stability based on BP neural network, the analytical model of slope stability is built. Aiming at the defects that BP...
1263
Authors: Shu Hua Ma, Jin Kuan Wang, Zhi Gang Liu, Hou Yan Jiang
Chapter 1: Applied Mechanics and Measurement Technology of Detection and Monitoring
Abstract:Data measured and collected by WSNs is often unreliable and a big amount of anomaly data exist. Detecting these anomaly in energy-constrained...
226