Paper Title:
Studies on Porous Titanium Alloy Implant Manufactured by Three Dimensional Solid Freeform Fabrication System
  Abstract

Titanium (Ti) alloys have emerged to become valuable biomaterials for biomedical and orthopedic applications due to their high strength to weight ratio, excellent biocompatibility and corrosion resistance. In this study, the authors utilized Solid Freeform Fabrication (SFF), also commonly known as a rapid prototyping technology to investigate a new porous three-dimensional (3D) Ti alloy implant. Elemental powders for producing a Ti-Al-Fe-Zr alloy were mechanically alloyed and blended with water soluble binder material. The blended powders were manufactured by Three Dimensional Printer (3DP), followed by debinding and sintering in an inert environment. The effects of process parameters on structural and geometrical requirements were assessed. Results from these investigations demonstrated that Ti alloys are promising biomaterials for near net shape fabrication of porous 3D implants, which retained their interconnected pore network. As an illustration, complex geometries of porous 3D Ti alloy specimens were manufactured as a demonstration of 3D SFF System.

  Info
Periodical
Advanced Materials Research (Volumes 29-30)
Edited by
Deliang Zhang, Kim Pickering, Brian Gabbitas, Peng Cao, Alan Langdon, Rob Torrens and Johan Verbeek
Pages
107-110
DOI
10.4028/www.scientific.net/AMR.29-30.107
Citation
K.K. Lim, P. Cheang, M. Chandrasekaran, "Studies on Porous Titanium Alloy Implant Manufactured by Three Dimensional Solid Freeform Fabrication System", Advanced Materials Research, Vols. 29-30, pp. 107-110, 2007
Online since
November 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hyeon Taek Son, J.M. Hong, Ik Hyun Oh, Jae Seol Lee, T.S. Kim, Kouichi Maruyama
Abstract:Mg97Zn1Y2 alloy powders were prepared from gas atomization process, followed by consolidation using spark plasma sintering (SPS) process....
1517
Authors: Yi Yi Tao, Jiu Hua Xu, Wen Feng Ding
Abstract:The machining performance of porous NiTi shape memory alloys prepared using powder metallurgical production technique has been investigated...
143
Authors: N. R. Ha, Z. X. Yang, Kyu Hong Hwang, J. K. Lee
Abstract:Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy...
177
Authors: Yan Wei Sui, Ai Hui Liu, Bang Sheng Li, Jing Jie Guo, Wei Biao Ju
Chapter 1: Materials Properties
Abstract:Ti-6Al-4V alloy castings are made by means of induction melting technology. The relationships between grain size and tensile strength, yield...
496
Authors: Xiao Ming Wang, Sheng Zhu, Qing Chang, Guo Feng Han
Chapter 6: Engineering Materials and Functional Materials
Abstract:In order to protect magnesium alloy structure used in equipments, Al-based alloy coating on ZM5 magnesium alloy surface was prepared by...
756