Paper Title:
Study on Microstructure of Quenched Martensite in W6Mo5Cr4V2 Steel
  Abstract

The microstructure and the formation mechanism of martensite in W6Mo5Cr4V2 steel was studied by metallographic microscope and JEM-2100 transmission electron microscope after the samples were austenized between the temperatures of Ac1~Accm and then quenched. The results show that When heating W6Mo5Cr4V2 steel samples between the temperatures of Ac1~Accm and then quenching, the cryptocrystalline martensite will be obtained. The cryptocrystalline martensite is plate martensite actually. It is considered that the formation cause of the cryptocrystal martensite is extremely inhomogeneous chemical composition in the austenite grains and the difference of martensite starting point (Ms point) of every small area in austenite grains. Besides the high-density dislocation and the fine twin crystal, the substructure of the cryptocrystalline martensite includes the superfine stacking fault. The stacking fault is caused by the stacking misarrangement during the crystal lattice reconstruction of martensite phase transformation. The midrib exists in the cryptocrystal martensite of W6Mo5Cr4V2 steel, which is composed of the fine twin crystal plates. The shear mechanism can not account for the formation of the martensite midrib.

  Info
Periodical
Advanced Materials Research (Volumes 295-297)
Chapter
Chapter 1: Materials Properties
Edited by
Pengcheng Wang, Liqun Ai, Yungang Li, Xiaoming Sang and Jinglong Bu
Pages
175-178
DOI
10.4028/www.scientific.net/AMR.295-297.175
Citation
Y. P. Ji, Z. C. Liu, H. P. Ren, "Study on Microstructure of Quenched Martensite in W6Mo5Cr4V2 Steel", Advanced Materials Research, Vols. 295-297, pp. 175-178, 2011
Online since
July 2011
Export
Price
$35.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jie Shi, Wen Quan Cao, Han Dong
Abstract:In this study a C-Mn High Strength Low Alloy steel (HSLAs) was processed by quenching and austenite reverted transformation during annealing...
238
Authors: Xin Jie Di, Dan Xu, Yong Chang Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The microstructure and carbide precipitate of simulated coarse grain heat affected zone(CGHAZ) in modified high Cr ferritic heat-resistant...
1320
Authors: Yong Qing Ma, Yu Mei Dai, Yu Fen Liang, Xiao Jing Zhang
Chapter 2: Materials Science and Engineering
Abstract:The temper-resistance temperature of Cr-W-Mo-V high carbon medium alloy steels is in a range at 200°C-300°C. Along with increasing C and...
591
Authors: Li Hui Wang, Di Tang, Hai Tao Jiang, Ji Bin Liu, Yu Chen
Chapter 3: Steel and Iron Technology
Abstract:Effects of continuous annealing process on microstructure and properties of Si based cold-rolled TRIP Steel were studied. The results show...
472
Authors: Yun Ping Ji, Heng Bin Guo, Xue Qin Zheng, Zi Li Jin, Hui Ping Ren
Chapter 7: Iron and Steel
Abstract:The original austenite grain size, the inclusions and the isothermal annealing microstructure of 20MnCrNi2Mo wear-resistant cast steel...
934