Paper Title:
Numerical Simulation of Temperature Field of Direct Laser Metal Deposition Shaping Process of Titanium Alloys
  Abstract

In order to control the thermal stress of forming process, based on “element birth and death” technology of finite element method, a numerical simulation of three-dimensional temperature field and stress field during multi-track & multi-layer laser metal deposition shaping(LMDS) process is developed with ANSYS parametric design language (APDL). The dynamic variances of temperature field and stress field of forming process are calculated with the energy compensation of interaction between molten pool-powder and laser-powder. The temperature field, temperature gradient, thermal stress field and distribution of residual stress are obtained. The results indicate that although the nodes on different layers are activated at different time, their temperature variations are similar. The temperature gradients of samples are larger near the molten pool area and mainly along z-direction. Finally, it’s verified that the analysis results are consistent with actual situation by the experiments with same process parameters.

  Info
Periodical
Advanced Materials Research (Volumes 295-297)
Chapter
Chapter 7: Common Aspects of Manufacturing
Edited by
Pengcheng Wang, Liqun Ai, Yungang Li, Xiaoming Sang and Jinglong Bu
Pages
2112-2119
DOI
10.4028/www.scientific.net/AMR.295-297.2112
Citation
Y. Kong, W. J. Liu, Y. C. Wang, "Numerical Simulation of Temperature Field of Direct Laser Metal Deposition Shaping Process of Titanium Alloys", Advanced Materials Research, Vols. 295-297, pp. 2112-2119, 2011
Online since
July 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shou Jin Sun, Milan Brandt
Abstract:The melt pool size of a single-track clad in the laser cladding of Hastelloy C, a Nickel based alloy, on mild steel substrate has been...
213
Authors: Lei Zhao, Rong Lu Sun, Yi Wen Lei
Abstract:NiCrBSi+Ti+C and NiCrBSi+TiC composite coatings were fabricated on H13 steel substrate by laser claddings to improve its wear resistance. The...
407
Authors: Mao Ke Tao, Zong Bao Shen, Cheng Zhang, Kai Wang
Abstract:Laser thermal stress forming is a flexible forming process that forms sheet metal by means of stresses induced by external heat instead of by...
1414
Authors: Ke Dian Wang, Bin Liu, Wen Qiang Duan, Wen Jun Wang
Chapter 3: Material Science, Machine System and Production System
Abstract:In this paper, ANSYS, a finite element analysis software is used to simulate the change of temperature field in micro-hole processing with...
324
Authors: Eneko Ukar, Aitzol Lamikiz, S. Martínez, Luis Norberto López de Lacalle
Abstract:In laser surface treatment the laser beam is used as energy source for surface modification improving aspects such as mechanical properties,...
127