Paper Title:
Corrosion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 Bulk Amorphous Alloy in 3.5% NaCl Solution
  Abstract

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.

  Info
Periodical
Advanced Materials Research (Volumes 299-300)
Edited by
Jianzhong Wang and Jingang Qi
Pages
427-431
DOI
10.4028/www.scientific.net/AMR.299-300.427
Citation
Y. Li, S. Z. Shang, M. Cheng, L. Xu, S. H. Zhang, "Corrosion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 Bulk Amorphous Alloy in 3.5% NaCl Solution", Advanced Materials Research, Vols. 299-300, pp. 427-431, 2011
Online since
July 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: Wen Feng Qin, Jiang Long, Feng Liu
Abstract:The surface morphology and hardness of electroless Ni–P alloy plating on 6061 aluminum alloys substrate in an alkaline plating bath with...
293
Authors: Su Qiu Jia, Guo Jun Liu, Qi Shuang Chen
Abstract:Mg-7.3Al magnesium alloys were investigated in the paper. The paper presents microstructural characterization of Mg-7.3Al alloy after casting...
585
Authors: Li Zhen Wang, Yan Juan Han, Kai Qing Zhang, Kun Wang
Abstract:The electrochemical behaviors of zinc electrode containing Bi, In and Al were tested to study aluminum acting on the electrochemical...
590
Authors: Rui Na Ma, Sha Sha Jin, Hong Yun Li
Metal Alloy Materials
Abstract:The static constant corrosion tests on Fe-B eutectic alloy are investigated in liquid zinc at 500°C. The systematic observation and research...
805