Paper Title:
Finite Element Simulation of High-Speed Hard Turning
  Abstract

The results reported in this paper pertain to the simulation of high speed hard turning when using the finite element method. In recent years high speed hard turning has emerged as a very advantageous machining process for cutting hardened steels. Among the advantages of this modern turning operation are final product quality, reduced machining time, lower cost and environmentally friendly characteristics. For the finite element modelling a commercial programme, namely the Third Wave Systems AdvantEdge, was used. This programme is specially designed for simulating cutting operations, offering to the user many designing and analysis tools. In the present analysis orthogonal cutting models are proposed, taking several processing parameters into account; the models are validated with experimental results from the relevant literature and discussed. Additionally, oblique cutting models of high speed hard turning are constructed and discussed. From the reported results useful conclusions may be drawn and it can be stated that the proposed models can be used for industrial application.

  Info
Periodical
Advanced Materials Research (Volumes 308-310)
Chapter
Structural Strength and Robustness
Edited by
Jian Gao
Pages
1465-1470
DOI
10.4028/www.scientific.net/AMR.308-310.1465
Citation
G. C. Du, Y. Chen, J. F. Zhang, Z. Z. Wei, "Finite Element Simulation of High-Speed Hard Turning", Advanced Materials Research, Vols. 308-310, pp. 1465-1470, 2011
Online since
August 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Toshiyuki Obikawa, Ali Basti, Jun Shinozuka
Abstract:The finite difference method was applied to simulate temperature distribution in the workpiece, cutting zone and tool in the orthogonal...
681
Authors: Wen Jun Deng, C. Li, Wei Xia, X.Z. Wei
Abstract:A coupled thermo-mechanical model of plane-strain orthogonal metal cutting including burr formation is presented using the commercial finite...
71
Authors: Gui Yu Li, Jian Feng Li, Jie Sun, Wei Dong Li, Liang Yu Song
Abstract:In the present study, the finite element model of machining carbon fiber reinforced aluminum matrix composites with representative fiber...
1745
Authors: B.J. Xiao, Cheng Yong Wang, Ying Ning Hu, Yue Xian Song
Abstract:A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the...
590
Authors: Yang Tan, Yi Lin Chi, Ya Yu Huang, Ting Qiang Yao
Chapter 3: Functional Manufacturing and Information Technology
Abstract:The finite element modeling and simulation of extremely high speed machining of Ti6Al4V alloy are presented in the paper. The Johnson-Cook’s...
293