Paper Title:
Study on Multi-Axial Mechanical Properties of a Polyurethane Foam and Experimental Verification
  Abstract

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.

  Info
Periodical
Advanced Materials Research (Volumes 311-313)
Chapter
Composites
Edited by
Zhongning Guo
Pages
301-308
DOI
10.4028/www.scientific.net/AMR.311-313.301
Citation
S. H. Han, Z. H. Lu, Y. J. Liu, "Study on Multi-Axial Mechanical Properties of a Polyurethane Foam and Experimental Verification", Advanced Materials Research, Vols. 311-313, pp. 301-308, 2011
Online since
August 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Jun Han, Yong Nian He, Hou Quan Zhang
Abstract:A complete stress-strain experiment curve, gained through exerting low confining pressure on brittle rock, reflects the deformation and...
70
Authors: Jun Su, Shi Lang Xu, Dong Tao Xia
Chapter 2: Frontiers of Building Materials
Abstract:In this article, through the seismic experimental analysis for six frame joints of ultra-high toughness cementitious composites, the...
794
Authors: Hong Yuan Tang, Wei Lin
Chapter 1: Structural Engineering
Abstract:This paper uses ANSYS finite element program to do the nonlinear finite element analysis on steel reinforced concrete L-shaped short-shear...
571