Paper Title:
Constitutive Modeling of Nanocrystalline Materials with Shear Band
  Abstract

In hardening stage, a model was used to study the plastic deformation behaviors of nanocrystalline materials. The material was considered as a composite of grain interior phase and grain boundary (GB) phase. The constitutive equations of the two phases were determined in term of their main deformation mechanisms. In softening stage, a shear band deformation mechanism and the corresponding constitutive relation were presented. Calculation results have shown that the predications fit well with experimental data. The investigation using the finite-element method (FEM) provided a direct insight into quantifying shear localization effect in nanocrystalline materials.

  Info
Periodical
Advanced Materials Research (Volumes 311-313)
Chapter
Micro/Nano Materials
Edited by
Zhongning Guo
Pages
512-515
DOI
10.4028/www.scientific.net/AMR.311-313.512
Citation
J. Q. Zhou, S. Zhang, Y. Wang, "Constitutive Modeling of Nanocrystalline Materials with Shear Band", Advanced Materials Research, Vols. 311-313, pp. 512-515, 2011
Online since
August 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zou Shun Zheng, Yuan Peng Zhu, Qin Wu Xu, Xuan Hui Qu
Abstract:Metal powders behave high strain rate, viscous effect and first hardening then softening deformation characteristics during the forming...
1154
Authors: Liu Yang, Ying She Luo, Bo Yang
Metal Alloy Materials
Abstract:In order to achieve the numerical calculating rheological forming process of materials, a series of tension experiments under the different...
596
Authors: Biao Guo, Sui Cai Zhang, Chang Chun Ge
Chapter 1: Machinery and Engineering Applications
Abstract:The hot compressive deformation behavior of the superalloy was investigated at the temperature range from 1050 to 1140 and strain rate range...
154
Authors: Takaei Yamamoto, Akihiko Suzuki, Hiroki Cho, Toshio Sakuma
Chapter 2: Engineering
Abstract:The transformation behavior of shape memory alloys is simulated for complex loadings of stress, strain and temperature. Calculations are made...
46
Authors: Qing Qiang He, Jia Sun, Jun You Zhao, Bao Min Yuan, Li Jian Xu
Chapter 3: Chemical, Biological, Composites, Functional Materials Science and Technology
Abstract:In order to optimize the hot deformation processing, useful and efficient mathematical models able to evaluate the different aspects of the...
325