Paper Title:
Mechanism and Experimental Investigation on Silicon Wafer Hybrid Polishing by Ultrasonic-Elliptic-Vibration Chemical-Mechanical
  Abstract

Considering the technical status and existing problems of traditional silicon wafer chemical mechanical polishing (CMP), especially for the diameter of silicon wafer increasing, constantly, the surface quality and efficiency of silicon wafer polishing are becoming an urgent problem to be solved, so the research subject of ultrasonic vibration hybrid polishing new technique was proposed. By means of mechanism theoretical analysis research, firstly, the processing mechanism of hybrid polishing was studied systematically. An investigation of polishing mechanisms based on the micro-contact model between the polishing pad and the polishing surface of silicon wafer was developed. Polishing mechanism theoretical analysis shows that when ultrasonic vibrations combined with mechanical and chemical, the performance of polishing slurry is improved in the process of CMP, therefore to create favorable conditions. To verify the established theory, then, a series of experiments to investigate the traditional CMP are conducted, as well as the polishing tool with the forms of ultrasonic vibration, the polishing pad, the polishing surface quality, velocity at polishing point v, and slurry supplying Q on silicon wafer polishing. Experiment findings showed that, in the same polishing conditions, especially, hybrid polishing by ultrasonic-elliptic-vibration has gained more advantage over the effect of silicon wafer polishing. When ultrasonic-elliptic-vibration is put in polishing tool, the silicon wafer polished surface roughness Ra from the traditional method of polishing 0.077μm going down to the 0.042μm, the no-smooth rate KR which describes the polished surface morphology is significantly improved, and the material removal rate increases by 18%. Experimental research findings of the surface quality and the material removal mechanism are shown to be consistent with the theoretical analysis.

  Info
Periodical
Advanced Materials Research (Volumes 314-316)
Chapter
Materials Processing Technology
Edited by
Jian Gao
Pages
829-836
DOI
10.4028/www.scientific.net/AMR.314-316.829
Citation
W. P. Yang, Y. B. Wu, H. F. Yang, "Mechanism and Experimental Investigation on Silicon Wafer Hybrid Polishing by Ultrasonic-Elliptic-Vibration Chemical-Mechanical", Advanced Materials Research, Vols. 314-316, pp. 829-836, 2011
Online since
August 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yong Bo Wu, Y. Fan, T. Tachibana, M. Kato
Abstract:This paper describes an experimental investigation of the effect of ultrasonic elliptic vibration of the shoe on the friction between the...
33
Authors: Bo Zhao, Guo Fu Gao, Qing Hua Kong
Abstract:A new dressing device for dense type diamond grinding wheel, whose elliptic vibration was prompted by single longitudinal vibration, was...
578
Authors: Z. Liang, Yong Bo Wu, Xin Bing Wang, Y. Peng, W. Xu, Wen Xiang Zhao
Abstract:This paper discusses the feasibility of improving machining efficiency of sapphire substrate by using two-dimensional (2D) ultrasonic...
35
Authors: Guo Fu Gao, Bo Zhao, Jing Lin Tong
Abstract:The Large-grit bronze-bonded diamond grinding wheel was shaped employing a diamond dresser with elliptic ultrasonic vibration assistance, to...
658
Authors: Yun Feng Peng, Tao Jiang, Yin Biao Guo, Zhen Zhong Wang, Yong Bo Wu
Chapter 2: Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:A theoretical analysis for the effect mechanism of elliptic vibration assistance on the cutting of brittle materials is presented in this...
499