Paper Title:
Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues
  Abstract

Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain.

  Info
Periodical
Chapter
Chapter II: Characterizations Techniques and Properties
Edited by
Maher Soueidan, Mohamad Roumié and Pierre Masri
Pages
193-196
DOI
10.4028/www.scientific.net/AMR.324.193
Citation
M. Shehahdeh, "Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues", Advanced Materials Research, Vol. 324, pp. 193-196, 2011
Online since
August 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Grethe Winther
Abstract:This paper combines experimental evidence at the mesoscopic and microscopic levels of the physical slip underlying plastic deformation in an...
1013
Authors: Tomotsugu Shimokawa, Toshiyasu Kinari, Sukenori Shintaku
Abstract:The interactions between edge dislocations and the grain boundary have been studied by using quasicontinuum simulations. With an increase in...
973
Authors: Yoshiteru Aoyagi, Naohiro Horibe, Kazuyuki Shizawa
Abstract:In this study, we develop a multiscale crystal plasticity model that represents evolution of dislocation structure on formation process of...
1057
Authors: Xiao Chun Ma, Ji Hui Yin
Abstract:The thermal effect has pronounced influence on deformation behavior of materials at nanoscale due to small length scale. In current paper,...
155
Authors: Karri V. Mani Krishna, Prita Pant
Abstract:Dislocation Dynamics (DD) simulations are used to study the evolution of a pre-specified dislocation structure under applied stresses and...
13