Paper Title:
Wear Characteristics of Various Diamond Tools in Cutting of Tungsten Carbide
  Abstract

Face cutting of tungsten carbide was conducted using two monocrystalline diamond tools and three polycrystalline diamond tools to investigate the wear characteristics in terms of the crystal structure and composition of the diamond. It was found that the wear of the monocrystalline diamond tool depends on the crystal planes that form the rake face and flank face of the cutting tool, and a cleavage fracture occurs when the cutting force acts as a shear force on the (111) crystal plane. The binderless nano-polycrystalline diamond tool exhibits excellent wear resistance beyond those of the sintered polycrystalline diamond tool and chemical vapour deposition polycrystalline diamond tool, as well as better wear resistance than the monocrystalline diamond tool.

  Info
Periodical
Chapter
Chapter 1: Grinding Technology
Edited by
Taghi Tawakoli
Pages
153-158
DOI
10.4028/www.scientific.net/AMR.325.153
Citation
A. Kubo, Y. Mochida, J. Tamaki, K. Harano, H. Sumiya, A.M.M. Sharif Ullah, "Wear Characteristics of Various Diamond Tools in Cutting of Tungsten Carbide", Advanced Materials Research, Vol. 325, pp. 153-158, 2011
Online since
August 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Manuel Belmonte, Filipe J. Oliveira, M.A. Lanna, C.R.M. Silva, Evaldo Jose Corat, Rui F. Silva
609
Authors: Yuan Liang Zhang, Zhi Min Zhou, Zhi Hui Xia
Abstract:Ultrasonic vibration is applied to diamond turning of special stainless steel to decrease diamond tool wear and improve the surface quality...
57
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, Rodrigo de Matos Oliveira, M.V. Ribeiro, Olivério Moreira Macedo Silva
Abstract:During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is...
598
Authors: Han Lian Liu, Chuan Zhen Huang, Bin Zou
Abstract:A multi-scale and multi-phase nanocomposite ceramic cutting tool material Al2O3/TiC/TiN(LTN) with high comprehensive mechanical properties...
318