Paper Title:
Influence of Y and Nb Addition on Crystallization Behavior and Mechanical Properties of Zr-Ni-Al-Cu-M Bulk Amorphous Alloys
  Abstract

Bulk amorphous alloys are new class of materials with excellent mechanical and thermal properties. Bulk metallic glasses (BMGs) have wide range of application such as structural materials. Minor alloying additions play beneficial role in the production and properties of BMGs. The present study was conducted to investigate the effect of Y and Nb addition on activation energy, crystallization behavior, thermal and mechanical properties of Zr64.5Ni15.5Al11.5Cu8.5. Bulk amorphous ingots and sheets of three [Zr0.645Ni0.155Al0.115Cu0.085]100-xM2 (M = Y and Nb and x = 0, 2 at. %) alloys were produced by Cu mold casting technique. The alloys were characterized by XRD, DSC, SEM, FESEM and EDS. Activation energies were calculated. The alloy containing Y shows single stage crystallization while Nb addition shows double stage crystallization. The maximum activation energy calculated is 300 kJ/mol. Parameters describing thermal stability in these systems were determined from DSC data which improved as a result of these additives. Reduced glass transition temperature Trg and thermal parameters like g, d and b were improved by Y addition. The supercooled liquid region varies between 87-100 K. Hardness and elastic moduli were also improved. It was concluded that Y and Nb addition has beneficial effect on mechanical properties. Three phases NiZr2 and CuZr2 and Cu10Zr7 were identified by XRD and confirmed by EDS in the samples annealed at 823 K while the AlNiY ternary phase was detected in the alloy containing Y.

  Info
Periodical
Edited by
Arshad Munir and Zaffar M. Khan
Pages
11-18
DOI
10.4028/www.scientific.net/AMR.326.11
Citation
M. Iqbal, J. I. Akhter, "Influence of Y and Nb Addition on Crystallization Behavior and Mechanical Properties of Zr-Ni-Al-Cu-M Bulk Amorphous Alloys", Advanced Materials Research, Vol. 326, pp. 11-18, 2011
Online since
September 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Z. Stokłosa, G. Badura, P. Kwapuliński, Józef Rasek, G. Haneczok, Józef Lelątko, Lucjan Pająk
Abstract:The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by...
171
Authors: Wei Zhang, Kunio Arai, J. Qiang, C. Qin, F. Jia, Akihisa Inoue
Abstract:The addition of Ti and Zr to Ni-Ta binary alloys is effective for the increase in stabilization of supercooled liquid and glass-forming...
1421
Authors: Victor I. Kolomytsev, M. Babanly, Alexandre Pasko, A.P. Shpak, Tetjana Sych, P. Ochin, Philippe Vermaut, Richard Portier, Eduard Cesari, D. Rafaja
Abstract:A series of multielementary AB-type shape memory alloys, quaternary (Ti,Hf)50(Ni,Cu)50 and quinary (Ti,Zr,Hf)50(Ni,Cu)50, have been produced...
113
Authors: Viorel Aurel Şerban, Cosmin Codrean, Ion Dragoş Uţu
Abstract:The paper makes a review about the opportunity, forming conditions and obtaining methods of bulk amorphous alloys and their properties. There...
37
Authors: György Thalmaier, Ioan Vida-Simiti, N. Jumate, Viorel Aurel Şerban, C. Codrean, Mircea Nicoară, L. Bukkosi
Chapter 1: Advanced Materials
Abstract:Nickel–titanium- group 5A metal (V, Nb, Ta, Zr) alloys are known as promising hydrogen-selective membrane materials. They can potentially be...
41