Paper Title:
Effect of Size and Location of a Weld Defect on Fatigue Life for Argon-Arc Welded Titanium Alloy Joint
  Abstract

Analytical studies were made on effect of size and location of a weld defect on fatigue life for argon-arc welded titanium alloy joint. In the analyses, a weld defect was assumed as an initial crack, and the crack growth life was taken as total fatigue life. By using the Isida and Noguchi’s stress intensity factor solution for a plate containing an embedded elliptical subsurface crack under tension, the life prediction code FASTRAN3.9 was revised. A small crack methodology based on the plasticity-induced crack-closure concept and the effective stress intensity factor range, Keff , was used to predict the total fatigue life of welded joint, and to study the effect of the size and location of weld defect on fatigue life by means of the revised FASTRAN3.9 code. Limited amounts of experimental data were used to make comparison with the predictions. The predicted fatigue lives are in reasonable agreement with experiments, and the effect of both the size and location of the weld defect on fatigue life was found to be significant.

  Info
Periodical
Advanced Materials Research (Volumes 33-37)
Edited by
Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang
Pages
121-128
DOI
10.4028/www.scientific.net/AMR.33-37.121
Citation
J.Z. Liu, X. R. Wu, L.F. Wang, B.R. Hu, B. Chen, "Effect of Size and Location of a Weld Defect on Fatigue Life for Argon-Arc Welded Titanium Alloy Joint", Advanced Materials Research, Vols. 33-37, pp. 121-128, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Choong Myeong Kim, Jung Kyu Kim, Chul Su Kim
Abstract:The optimum welding condition for the input power was experimentally determined using the ERW simulator. The optimum condition derived from...
3
Authors: Young Pyo Kim, Cheol Man Kim, Woo Sik Kim, Kwang Seon Shin
Abstract:A clear understanding of fatigue properties for the pipeline steel and its weld is important to provide information for pipeline design...
303
Authors: Alessandro Pirondi, Luca Collini, D. Fersini
Abstract:In this work the fatigue crack growth properties of friction stir welded butt joints are evaluated. Fatigue Crack Growth (FCG) tests have...
261
Authors: Yu E Ma, Bao Qi Liu, Zhen Qiang Zhao
Chapter 2: Material Science and Engineering
Abstract:Al-Li alloy 2198-T8 was used in the fuselage application. Integral fuselage panels were joined by double friction stir welds. Fatigue tests...
651