Paper Title:
Evaluation of Fatigue Crack Growth of Interacting Surface Cracks
  Abstract

Since mechanical interaction between multiple cracks affects the rate of crack growth due to fatigue and stress corrosion cracking, it is important to consider its influence when predicting growth. In this study, a procedure predicting the growth of interacting surface cracks was developed. First, using the results of fatigue crack growth tests performed in a previous study, the transient growth behavior during coalescence and growth under interaction was evaluated based on area of crack face. It was shown that the area is a representative parameter of the growth of interacting surface cracks as well as independent cracks. The growth in area showed good correlation with the crack driving force defined using size of area. Then, in order to investigate the relationship between growth of interacting cracks and their relative spacing, crack growth simulations were carried out. The body force method was used to evaluate the change in stress intensity factors (SIF) during crack growth under interaction, and the simulation could reproduce the crack configurations obtained in the fatigue crack growth test. SIF of an interacting crack tip converges to that of a coalesced crack as the distance between cracks decreases. It was concluded that when the distance between cracks is small enough, the cracks can be replaced with a semi-elliptical crack of the same area of crack face for a growth evaluation. The threshold offset distance for the replacement was suggested to be less than 0.1Rx, where Rx is the span length of two cracks on the surface.

  Info
Periodical
Advanced Materials Research (Volumes 33-37)
Edited by
Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang
Pages
187-198
DOI
10.4028/www.scientific.net/AMR.33-37.187
Citation
M. Kamaya, "Evaluation of Fatigue Crack Growth of Interacting Surface Cracks", Advanced Materials Research, Vols. 33-37, pp. 187-198, 2008
Online since
March 2008
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using 490MPa TMCP steel were performed in synthetic seawater condition to investigate the...
1043
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using tensile strength of 490MPa TMCP steel were performed in synthetic seawater condition to...
1145
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525