Paper Title:
Study on Ductile Fracture Including Shear-Lip Fracture under Mixed Mode Loading Condition
  Abstract

Dimple fracture tests are conducted under mode I and mixed mode lading conditions. Dimple fracture zone and shear-lip fracture zone are observed by scanning electron microscope precisely. It is found that crack growth direction is affected largely by the change of loading condition. It is also found that the differences of fracture pattern between mid-plane and at free surface are very large. Void diameter and crack growth direction are measured. Numerical simulation is conducted to simulate fracture tests in three-dimensional field. Gurson’s constitutive equation is used and large deformation analyses are conducted. It is assumed that void nucleation is controlled by both plastic strain and stress. Numerical results are compared with those of experiments. It is found that results of numerical simulation agree well with those of experiment qualitatively.

  Info
Periodical
Advanced Materials Research (Volumes 33-37)
Edited by
Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang
Pages
23-28
DOI
10.4028/www.scientific.net/AMR.33-37.23
Citation
M. Kikuchi, S. Sannoumaru, "Study on Ductile Fracture Including Shear-Lip Fracture under Mixed Mode Loading Condition", Advanced Materials Research, Vols. 33-37, pp. 23-28, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: M.R.M. Aliha, Mahdi Rezaei
Abstract:Crack growth path was investigated experimentally, numerically and theoretically using two test specimens subjected to pure mode II loading....
159