Paper Title:
Fracture Mechanics Analysis on Smart-Cut® Technology: Effects of Stiffening Wafer and Defect Interaction
  Abstract

In the present paper, continuum fracture mechanics is used to analyze the Smart-Cut process, a recently established ion cut technology which enables highly efficient fabrication of various silicon-on-insulator (SOI) wafers of very high uniformity in thickness. Using integral transform and Cauchy singular integral equation methods, the mode-I and mode-II stress intensity factors, energy release rate and crack opening displacements are derived in order to examine several important fracture mechanisms involved in the Smart-Cut process. The effects of defect interaction and stiffening wafer on defect growth are investigated. The numerical results indicate that a stiffener/handle wafer can effectively prevent the donor wafer from blistering and exfoliation, but it slows down the defect growth by decreasing the magnitudes of SIFs. Defect interaction also plays an important role in the splitting process of SOI wafers, but its contribution depends strongly on the size, interval and internal pressure of defects. Finally, an analytical formula is derived to estimate the implantation dose required for splitting a SOI wafer.

  Info
Periodical
Advanced Materials Research (Volumes 33-37)
Edited by
Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang
Pages
67-72
DOI
10.4028/www.scientific.net/AMR.33-37.67
Citation
B. Gu, H. Y. Liu, Y. W. Mai, X. Q. Feng, S. W. Yu, "Fracture Mechanics Analysis on Smart-Cut® Technology: Effects of Stiffening Wafer and Defect Interaction ", Advanced Materials Research, Vols. 33-37, pp. 67-72, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jun Si, Fu Zhen Xuan, Shan Tung Tu
Abstract:The interaction behavior of two non-aligned through-wall cracks in flat plates is investigated by the finite element method (FEM) under...
105
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525