Paper Title:
Probabilistic Fracture Mechanics Analysis for Optimization of High-Pressure Vessel Inspection
  Abstract

The use of High-pressure Vessel in eco-friendly Natural Gas Vehicles (NGV) is technologically feasible nowadays. Common applications of High-pressure Vessel are to carry Compressed Natural Gas (CNG), hydrogen for fuel-cell vehicle, and high-compression air in the new air-car technology. High-pressure Vessel is subjected to extreme compression-decompression cycles that could cause fatigue failure. Therefore, vessel shall be inspected regularly to detect if there is crack inside. The objective of this paper is to optimize the inspection interval of CNG Highpressure Vessel by means of Probabilistic Fracture Mechanics Analysis. Vessel is made of highalloy steel and assumed to have distributed elliptical cracks. Three length-to-depth crack ratios (a/c), i.e. 3, 8, and 15, are simulated. Crack is assumed to propagate in fixed ratio. Stress Intensity Factors at each crack tip are calculated by Finite Element Analysis and Crack Closure Technique. Fatigue crack growth is simulated by Cycle-by-Cycle Integration Technique. The Fracture Mechanics Analysis is then expanded to probabilistic analysis by considering stochastic nature of analysis parameters. Probability of failure is computed by Guided Direct Simulation Method using software which is specially written for this project [1]. Based on simulation result, High-pressure Vessel is recommended to be inspected every 3 years.

  Info
Periodical
Advanced Materials Research (Volumes 33-37)
Edited by
Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang
Pages
79-84
DOI
10.4028/www.scientific.net/AMR.33-37.79
Citation
I. Sadikin, D. Suharto, B. Meliana, K. Supelli, A. Arya, "Probabilistic Fracture Mechanics Analysis for Optimization of High-Pressure Vessel Inspection", Advanced Materials Research, Vols. 33-37, pp. 79-84, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Choong Myeong Kim, Jung Kyu Kim, Chul Su Kim
Abstract:The optimum welding condition for the input power was experimentally determined using the ERW simulator. The optimum condition derived from...
3
Authors: F. Ricci, F. Franco, Nicola Montefusco
Abstract:In this paper, the mechanisms of propagation of the damage in aluminum panels repaired with bonded composite patches of different mechanical...
597
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425
Authors: Li Hong Gao, Ge Ning Xu, Ping Yang
Structural Strength and Robustness
Abstract:The random formula on fatigue crack growth is deduced by the fatigue crack data and the improved Taguchi method, and the sample estimates of...
1277