Paper Title:
Atomistic Simulation of the Energy Barrier for Dislocation Movement in Si
  Abstract

We examine the mobility of an edge dislocation pair on the shuffle plane in Si using action-derived molecular dynamics (ADMD). ADMD is one of the specially designed schemes for finding out the reaction pathways passing through transition states in the landscape of potential energy surfaces. Via ADMD calculations, the various structural changes of dislocation line with atomic resolution and their corresponding energy barriers are evaluated during the dislocation motion. The energy barrier for the movement of an edge dislocation pair on shuffle plane is about 0.24 eV. In this case, one bond between the atoms at the dislocation line is broken first, and then a new bond is formed with the neighboring atom. The movement of the dislocation line is achieved by a sequence of making new bond after bond-breaking of concerned atoms, which occur layer by layer. When the dislocation moves through this mechanism, energy barrier for the dislocation movement does not depend on the length of dislocation line. Thus the present result enables one to surmount the inherent limitation of Peierls-Nabarro’s two-dimensional continuum model, which may fail to describe successfully dislocation motion on the atomistic level.

  Info
Periodical
Advanced Materials Research (Volumes 33-37)
Edited by
Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang
Pages
957-962
DOI
10.4028/www.scientific.net/AMR.33-37.957
Citation
S.Y. Kim, S. Im, Y.Y. Earmme, "Atomistic Simulation of the Energy Barrier for Dislocation Movement in Si", Advanced Materials Research, Vols. 33-37, pp. 957-962, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Sukky Jun, Young Min Lee, Sung Youb Kim, Se Young Im
Abstract:Molecular dynamics simulation of nanoindentation on Al(111) surface is presented. The simulation is performed using the Ercolessi-Adams glue...
735
Authors: Tomotsugu Shimokawa, Toshiyasu Kinari, Sukenori Shintaku
Abstract:The interactions between edge dislocations and the grain boundary have been studied by using quasicontinuum simulations. With an increase in...
973
Authors: Michael Dudley, Yi Chen, Xian Rong Huang, Rong Hui Ma
Abstract:A review is presented of the current understanding of the dislocation configurations observed in PVT-grown 4H- and 6H-SiC boules and...
261
Authors: Xiao Chun Ma, Ji Hui Yin
Abstract:The thermal effect has pronounced influence on deformation behavior of materials at nanoscale due to small length scale. In current paper,...
155
Authors: Karri V. Mani Krishna, Prita Pant
Abstract:Dislocation Dynamics (DD) simulations are used to study the evolution of a pre-specified dislocation structure under applied stresses and...
13