Paper Title:
The Photocatalytic Degradation of Methylene Blue Wastewater with Nanoscale Ferric Oxide as Catalyst
  Abstract

Nanoscale Ferric Oxide was prepared from natural hematite and characterized. Using it as catalyst, methylene blue-simulated wastewater was treated by photocatalytic degradation with high-voltage mercury lamp and sunlight as excitation light source. Main factors, including the preparation conditions and dosage of ferric oxide, pH value, reaction time and initial concentration of simulated wastewater, and their influence to treatment effect were discussed. Test results showed that at a pulverization time of 1.5h, calcination time of 2h at 500°C, initial methylene blue (MB) concentration of 20mg/L, pH=2 and a ferric oxide dosage of 0.01g/30ml, for both high-voltage mercury lamp and sunlight, MB wastewater was degraded effectively in lab-scale experiment; after 5h’s radiation, MB concentrations were reduced from 20mg/L to 0.51mg/L and 9.18mg/L respectively. With sunlight as the radiation light source, an enlarged experiment was done on a custom-built device, and MB concentration was reduced from 20mg/L to 0.11mg/L, which was significantly better than treatment results from lab-scale experiments and UV radiation. MB photocatatytic degradation reactions at different initial concentrations were in accordance with Lagergren’s pseudo-first-order kinetic equation. Spectral analysis of degradation products showed that MB molecules were degraded to inorganic ions.

  Info
Periodical
Advanced Materials Research (Volumes 356-360)
Chapter
Chapter 8: Waste Disposal and Recycling
Edited by
Hexing Li, Qunjie Xu and Daquan Zhang
Pages
1813-1818
DOI
10.4028/www.scientific.net/AMR.356-360.1813
Citation
Y. R. Zhu, G. C. Li, Q. P. Zhang, C. Tang, "The Photocatalytic Degradation of Methylene Blue Wastewater with Nanoscale Ferric Oxide as Catalyst", Advanced Materials Research, Vols. 356-360, pp. 1813-1818, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hanggara Sudrajat, Sandhya Babel
Chapter 3: Chemical and Biomaterials
Abstract:A visible light active nitrogen-doped ZnO (N-ZnO) was synthesized using a solvent-free mechanochemical method and applied to degrade...
299