Paper Title:
The Influence of Temperature and Oxidation Time on the Preparation of Graphite Oxide
  Abstract

Graphite oxide samples with different oxidation levels were prepared by the oxidation of natural flake graphite based on a modified Hummers method, using different reaction temperatures and oxidation times followed by ultrasonication then centrifugation to obtain the corresponding graphene oxide nanosheet suspensions. The samples were characterized by XRD and AFM. The results show that the oxidation level of graphite oxide samples can be increased by increasing either the reaction temperature or the oxidation time. Well-dispersed suspensions of the graphite oxide samples can be formed in alkaline solution after ultrasonication, especially for samples with higher oxidation levels. A number of coarse particles are observed in the suspensions, particularly those derived from graphite oxide samples with lower oxidation levels, due to the lower degree of exfoliation in these samples, which is influenced by the oxidation level. Rapid sedimentation of these coarse particles can be achieved by high-speed centrifugation, yielding homogenous suspensions of graphite oxide comprising a mass of monolayer graphene oxide nanosheets with lateral dimensions of several hundred nanometers to several micrometers and thickness of ~1.0–1.4 nm.

  Info
Periodical
Chapter
Chapter 2: Material Science and Manufacturing Technology
Edited by
Helen Zhang and David Jin
Pages
291-295
DOI
10.4028/www.scientific.net/AMR.366.291
Citation
Q. Huang, H. J. Sun, T. J. Peng, "The Influence of Temperature and Oxidation Time on the Preparation of Graphite Oxide", Advanced Materials Research, Vol. 366, pp. 291-295, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hai Yang Xian, Tong Jiang Peng, Hong Juan Sun
Symposium C: Minerals and Resources, Materials for Oil-Gas Field Engineering, Structure Building Applications
Abstract:The effect of particle size of natural graphite on the size and structure of graphene oxide (GO) was investigated by using natural flake...
185