Paper Title:
Modeling of Fatigue Crack Growth Based on Two Cyclic Plasticity Models
  Abstract

Based on two different cyclic plasticity models, fatigue crack growth for 16MnR steel specimens is simulated by using the same multi-axial fatigue damage criterion. The first plasticity model is the Jiang and Sehitoglu model and the second plasticity model is the simple nonlinear kinematic hardening model. The elastic-plastic stress-strain field near the crack tip is obtained respectively by using the two plasticity models. According to the same fatigue criterion, different fatigue damage near the crack tip is determined on the basis of stress-strain responses. The first plasticity model can accurately capture cyclic plasticity deformation behavior and predictions of fatigue crack growth rate are in agreement with the experimental results. However, lots of material constants in the model need to be fitted and more experimental tests should be conducted. The second plasticity model is very simple. The parameters of the model can be acquired easily by uniaxial fatigue tests. Compared with experimental data, the prediction results of fatigue crack growth rate lead to some errors by adopting the second plasticity model.

  Info
Periodical
Advanced Materials Research (Volumes 44-46)
Edited by
Z.Y. Shen, M.N. James, W.D. Li, and Y.X. Zhao
Pages
111-118
DOI
10.4028/www.scientific.net/AMR.44-46.111
Citation
W. F. Tu, X. G. Wang, Z. L. Gao, "Modeling of Fatigue Crack Growth Based on Two Cyclic Plasticity Models", Advanced Materials Research, Vols. 44-46, pp. 111-118, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557
Authors: Wei Tang, He Xue, Dan Zhao
Abstract:Environmentally assisted cracking (EAC) or stress corrosion cracking (SCC) of key structural materials in the environments of the light water...
1128
Authors: Li Hong Gao, Ge Ning Xu, Ping Yang
Structural Strength and Robustness
Abstract:The random formula on fatigue crack growth is deduced by the fatigue crack data and the improved Taguchi method, and the sample estimates of...
1277