Paper Title:
A Statistically Load-Weighted Probabilistic Fatigue Life Model
  Abstract

By interpreting traditional stress-strength interference model as a statistical average of the probability that strength (a random variable) is greater than stress (another random variable) over its whole distribution range, the same model configuration, which was conventionally applied only to the case of same system-of-units parameters (e.g., stress and strength, both are measured in MPa), was applied to more general situation of different system-of-units parameters. That is to say, the traditional model was extended to more general situations of any two variables, as long as one of the variables can be expressed as a function of the other. Further more, the probabilistic fatigue life under random stress can be predicted, with known probabilistic fatigue lives under several deterministic cyclic stress amplitudes and known distribution of the random cyclic stress amplitude. The underlying principle is that the fatigue life under random stress is equal to the statistical average of the fatigue lives under cyclic stress of deterministic amplitudes which can be considered as the samples of the random stress.

  Info
Periodical
Advanced Materials Research (Volumes 44-46)
Edited by
Z.Y. Shen, M.N. James, W.D. Li, and Y.X. Zhao
Pages
51-56
DOI
10.4028/www.scientific.net/AMR.44-46.51
Citation
L. Y. Xie, W. Q. Lin, "A Statistically Load-Weighted Probabilistic Fatigue Life Model", Advanced Materials Research, Vols. 44-46, pp. 51-56, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jaroslav Polák, Martin Petrenec
Abstract:The fatigue properties of ferritic-pearlitic-bainitic steel using specimens produced from massive forging were measured in stress controlled...
577
Authors: Xin Hong Shi, Jian Yu Zhang, Rui Bao, Bin Jun Fei
Abstract:Studies about the effect of stress characteristics on multi-axial high-cycle fatigue of metals are still insufficient. Up to now, little work...
877
Authors: Shu Ying Yin, Li Jia Chen, Xin Wang
Building Materials
Abstract:In order to identify the influence of solid solution, aging and solid solution plus aging treatments on the low-cycle fatigue behavior of the...
883
Authors: R. Oyyaravelu, K. Annamalai, M. Senthil Kumar, C.D. Naiju, Joel Michael
Chapter 23: Mechanical and Electronic Engineering Control
Abstract:Fatigue failure has become a major concern in the automobile and aircraft industry, heavy machinery etc. Failures by fatigue are especially...
1808
Authors: Ewa Marcisz, Adam Niesłony, Tadeusz Łagoda
Chapter 1: Fatigue Life Prediction
Abstract:The paper presents the concept of division of the total strain amplitudes. Simulations were performed for high-alloy steel X6NiCr3220 for...
43