Paper Title:
Experiments and Numerical Simulations of Interlocked Materials
  Abstract

Interlocked materials are new examples of “hybrid materials”, mixing materials and structures at a millimetric scale. They consist of periodic assemblies of elementary blocks with specific shapes, maintained in contact by compressive boundary conditions. These “pre-fragmented materials” can simultaneously fulfil antagonistic properties such as high strength together with good damage tolerance. We performed indentation tests on two different structures: (i) an assembly of osteomorphic ice blocks and (ii) an assembly of plaster made cubes. The tests being performed up to the failure, it is found that these structures dissipate much more mechanical energy than similar monolithic plates and preserve their integrity up to much larger deformation. A numerical modelling is then developed in order to reproduce this behaviour. Using finite elements, we simulated the friction contact between two elastic cubes or blocks, for a given lateral load and friction coefficient. The outputs are then introduced as local contact rules in a “Discrete Elements code” specially developed for this study. The discrete code is then used to model the elastic and damage behaviour of assemblies of cubes or osteomorphic blocks. The comparison with experimental results is satisfactory. Finally, the code is used to model larger assemblies of interlocked structures for which the force path is analysed.

  Info
Periodical
Advanced Materials Research (Volumes 47-50)
Edited by
Alan K.T. Lau, J. Lu, Vijay K. Varadan, F.K. Chang, J.P. Tu and P.M. Lam
Pages
125-128
DOI
10.4028/www.scientific.net/AMR.47-50.125
Citation
C. Brugger, Y. Bréchet, M. Fivel, "Experiments and Numerical Simulations of Interlocked Materials", Advanced Materials Research, Vols. 47-50, pp. 125-128, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yi Che, Sheng Long Ban, Jian Yu Cui, Geng Chen, Yu Pu Song
Abstract:The purpose of this study is to investigate the influence of specimen size and shape on compressive strength of concrete. Concrete cubes,...
1375
Authors: Dan Gu, Hee Chang Lim
Chapter 3: Development and Utilization of Wind Energy
Abstract:The study undertook various calculations of the turbulent wind flow around a body in close proximity to neighboring obstacles, with the aim...
416
Authors: Filip Havlík, Jan Růžička
Abstract:This paper describes some of tests of mechanical properties of rammed earth which have been held at CTU in Prague. Influence of size of...
258