Paper Title:
Analysis of the Novel Strain Responsive Actuators of Silicone Dielectric Elastomer
  Abstract

The acrylic acid and silicone are common dielectric elastomer materials. These actuators have shown excellent activate properties including large strains up to 380% and high energy densities up to 3.4 J/g, high efficiency, high responsive speed , good reliability and durability, etc. When a voltage is applied on the compliant electrodes of the dielectric elastomers, the polymer shrinks along with the electric field and expands in the plain area which erects the orientation of the line. In this paper, we synthesize a novel silicone dielectric elastomer with high dielectric constant, large strain and high force output. Pre-strain and certain driving electric field are applied on the novel silicone film, respectively. The strain responsing to the Maxwell stress is measured. Using the large deformation theory of finite element method to simulate the deformable behavior of materials, the simulation results agree with the experiment. The coupling effect of the mechanics and electric fields applied on the electrode of the dielectric elastomers is inverstigated. The finite element simulation of large deformation theory can be used to describe the dielectric elastomers materials large deformation that induced by the static electric field.

  Info
Periodical
Advanced Materials Research (Volumes 47-50)
Edited by
Alan K.T. Lau, J. Lu, Vijay K. Varadan, F.K. Chang, J.P. Tu and P.M. Lam
Pages
298-301
DOI
10.4028/www.scientific.net/AMR.47-50.298
Citation
L. W. Liu, J. M. Fan, Z. Zhang, L. Shi, Y. J. Liu, J. S. Leng, "Analysis of the Novel Strain Responsive Actuators of Silicone Dielectric Elastomer", Advanced Materials Research, Vols. 47-50, pp. 298-301, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Federico Carpi, Gabriele Frediani, Andrea Mannini, Danilo De Rossi
Abstract:Dielectric elastomer (DE) actuators are able to typically show significant electromechanical performances, which make this electroactive...
186
Authors: Hristiyan Stoyanov, Guggi Kofod, Reimund Gerhard
Abstract:Dielectric elastomer actuators based on Maxwell-stress induced deformation, are considered for many potential applications where high...
81
Authors: Peter Sommer-Larsen, Kim Hansen, Mohamed Benslimane
Abstract:Dielectric elastomer actuators with smart compliant electrodes (DESCE) combine position sensing and actuation in one macroscopic and...
169
Authors: Shahab Amelian, Hamid R. Koofigar
Abstract:Piezoelectric materials are used in various applications as active vibration control, fault detection in structures and piezoelectric...
1237
Authors: Toshihiro Hirai, Mohammad Ali, Takafumi Ogiwara, Daijiro Tsurumi, Keiichi Yamamoto, Takamitsu Ueki, Hong Xia, Minoru Hashimoto
Chapter 1: EAP Materials and Analysis of Physical Mechanisms
Abstract:Poly(vinyl chloride) (PVC) has been found to be actuated by applying dc electric field, accompanying colossal strain on the anode surface,...
1