Paper Title:
Development of a Protein-Filled Conduit for Peripheral Nerve Regeneration
  Abstract

Currently, most commercialized peripheral nerve regenerative products are constructed from biodegradable polymers into hollow conduits. To speed up the regeneration rate, we proposed a development of a biocompatible protein-filled conduit for anastomosis amputated peripheral nerve with growth factor controlled release function. Glutaraldehyde-crosslinked protein sponges were tested for their abilities to controlled release of nerve growth factor (NGF) in vitro in our previous experiments. Type B gelatin sponges were able to limit diffusions of NGF due to electrostatic interactions between them. The rate of growth factor releases would be depended on degradation of the crosslinked gelatin. A nerve conduit model was produced using perfluoro alkoxy (PFA) tubes filled with gelatin which had been crosslinked using X-ray from Argon plasma treatment. This method of crosslinking provided 21.22±3.03 % degree of crosslinking. Hollow nerve conduits fabricated from poly(l-lactide-co-caprolactone) (PLCL) had a thicknesses and an inner diameters of 0.31±0.03 mm and 1.63±0.07 mm respectively. Average pore sizes of the inner surfaces and outer surfaces were 9.70±3.44 µm and 1.24±0.77 µm respectively. PLCL film supported growth of L929 mouse fibroblasts. For continuing works, we are testing the protein-filled conduits for peripheral nerve regeneration in animals.

  Info
Periodical
Advanced Materials Research (Volumes 55-57)
Main Theme
Edited by
Tawee Tunkasiri
Pages
701-704
DOI
10.4028/www.scientific.net/AMR.55-57.701
Citation
K. Yingsukwattana, S. Agthong, R. Mongkonnavin, Y. Tabata, S. Kanokpanont, "Development of a Protein-Filled Conduit for Peripheral Nerve Regeneration", Advanced Materials Research, Vols. 55-57, pp. 701-704, 2008
Online since
August 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: A. Klimovskaya, N. Vysotskaya, Yu. Chaikovsky, A. Korsak, V. Lichodievskiy, I. Ostrovskii
Chapter 3: MEMS and Structures for Sensors and Biomedicine
Abstract:Recently study of the “silicon wire - nerve tissue’ interface has been in the focus of attention due to its potential use in recovering...
214